Spaces:
Runtime error
Runtime error
pipeline_tag: sentence-similarity | |
tags: | |
- sentence-transformers | |
- feature-extraction | |
- sentence-similarity | |
- transformers | |
# {MODEL_NAME} | |
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search. | |
<!--- Describe your model here --> | |
## Usage (Sentence-Transformers) | |
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: | |
``` | |
pip install -U sentence-transformers | |
``` | |
Then you can use the model like this: | |
```python | |
from sentence_transformers import SentenceTransformer | |
sentences = ["This is an example sentence", "Each sentence is converted"] | |
model = SentenceTransformer('{MODEL_NAME}') | |
embeddings = model.encode(sentences) | |
print(embeddings) | |
``` | |
## Usage (HuggingFace Transformers) | |
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. | |
```python | |
from transformers import AutoTokenizer, AutoModel | |
import torch | |
#Mean Pooling - Take attention mask into account for correct averaging | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output[0] #First element of model_output contains all token embeddings | |
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | |
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) | |
# Sentences we want sentence embeddings for | |
sentences = ['This is an example sentence', 'Each sentence is converted'] | |
# Load model from HuggingFace Hub | |
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}') | |
model = AutoModel.from_pretrained('{MODEL_NAME}') | |
# Tokenize sentences | |
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') | |
# Compute token embeddings | |
with torch.no_grad(): | |
model_output = model(**encoded_input) | |
# Perform pooling. In this case, mean pooling. | |
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) | |
print("Sentence embeddings:") | |
print(sentence_embeddings) | |
``` | |
## Evaluation Results | |
<!--- Describe how your model was evaluated --> | |
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME}) | |
## Training | |
The model was trained with the parameters: | |
**DataLoader**: | |
`torch.utils.data.dataloader.DataLoader` of length 85 with parameters: | |
``` | |
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'} | |
``` | |
**Loss**: | |
`sentence_transformers.losses.MarginMSELoss.MarginMSELoss` | |
Parameters of the fit()-Method: | |
``` | |
{ | |
"epochs": 1, | |
"evaluation_steps": 0, | |
"evaluator": "NoneType", | |
"max_grad_norm": 1, | |
"optimizer_class": "<class 'transformers.optimization.AdamW'>", | |
"optimizer_params": { | |
"lr": 2e-05 | |
}, | |
"scheduler": "WarmupLinear", | |
"steps_per_epoch": null, | |
"warmup_steps": 8, | |
"weight_decay": 0.01 | |
} | |
``` | |
## Full Model Architecture | |
``` | |
SentenceTransformer( | |
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel | |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False}) | |
) | |
``` | |
## Citing & Authors | |
<!--- Describe where people can find more information --> |