Spaces:
Running
Running
File size: 9,778 Bytes
777dbeb 556f1d5 777dbeb 556f1d5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 |
import streamlit as st
import json
from typing import List
from fastembed import LateInteractionTextEmbedding, TextEmbedding
from fastembed import SparseTextEmbedding, SparseEmbedding
from qdrant_client import QdrantClient, models
from tokenizers import Tokenizer
#############################
# 1. Utility / Helper Code
#############################
@st.cache_resource
def load_tokenizer():
"""
Load the tokenizer for interpreting sparse embeddings (optional usage).
"""
return Tokenizer.from_pretrained(SparseTextEmbedding.list_supported_models()[0]["sources"]["hf"])
@st.cache_resource
def load_models():
"""
Load/initialize your models once and cache them.
"""
# Dense embedding model
dense_embedding_model = TextEmbedding("BAAI/bge-small-en-v1.5")
# Late interaction model (ColBERTv2)
late_embedding_model = LateInteractionTextEmbedding("colbert-ir/colbertv2.0")
# Sparse embedding model
sparse_model_name = "Qdrant/bm25"
sparse_model = SparseTextEmbedding(model_name=sparse_model_name)
return dense_embedding_model, late_embedding_model, sparse_model
def build_qdrant_index(data):
"""
Given the parsed data (list of items), build an in-memory Qdrant index
with dense, late, and sparse vectors.
"""
# Extract fields
items = data["items"]
descriptions = [f"{item['name']} - {item['description']}" for item in items]
names = [item["name"] for item in items]
metadata = [
{"name": item["name"]} # You can store more fields if you like
for item in items
]
# Load models
dense_embedding_model, late_embedding_model, sparse_model = load_models()
# Generate embeddings
dense_embeddings = list(dense_embedding_model.embed(descriptions))
name_dense_embeddings = list(dense_embedding_model.embed(names))
late_embeddings = list(late_embedding_model.embed(descriptions))
sparse_embeddings: List[SparseEmbedding] = list(sparse_model.embed(descriptions, batch_size=6))
# Create an in-memory Qdrant instance
qdrant_client = QdrantClient(":memory:")
# Create collection schema
qdrant_client.create_collection(
collection_name="items",
vectors_config={
"dense": models.VectorParams(
size=len(dense_embeddings[0]),
distance=models.Distance.COSINE,
),
"late": models.VectorParams(
size=len(late_embeddings[0][0]),
distance=models.Distance.COSINE,
multivector_config=models.MultiVectorConfig(
comparator=models.MultiVectorComparator.MAX_SIM
),
),
},
sparse_vectors_config={
"sparse": models.SparseVectorParams(
modifier=models.Modifier.IDF,
),
}
)
# Upload points
points = []
for idx, _ in enumerate(metadata):
points.append(
models.PointStruct(
id=idx,
payload=metadata[idx],
vector={
"late": late_embeddings[idx].tolist(),
"dense": dense_embeddings[idx],
"sparse": sparse_embeddings[idx].as_object(),
},
)
)
qdrant_client.upload_points(
collection_name="items",
points=points,
)
return qdrant_client
def run_queries(qdrant_client, query_text):
"""
Run all the different query types and return results in a dictionary.
"""
# Load models
dense_embedding_model, late_embedding_model, sparse_model = load_models()
# Generate single-query embeddings
dense_query = next(dense_embedding_model.query_embed(query_text))
late_query = next(late_embedding_model.query_embed(query_text))
sparse_query = next(sparse_model.query_embed(query_text))
# For the fusion approach, we need a list form for prefetch
tsq = list(sparse_model.embed(query_text, batch_size=6))
# We'll store top-5 results for each approach
results = {}
# 1) ColBERT (late)
results["C"] = qdrant_client.query_points(
collection_name="items",
query=late_query,
using="late",
limit=5,
with_payload=True
)
# 2) Sparse only
results["S"] = qdrant_client.query_points(
collection_name="items",
query=models.SparseVector(**sparse_query.as_object()),
using="sparse",
limit=5,
with_payload=True
)
# 3) Dense only
results["D"] = qdrant_client.query_points(
collection_name="items",
query=dense_query,
using="dense",
limit=5,
with_payload=True
)
# 4) Hybrid fusion (RRF for Sparse+Dense)
results["S+D-F"] = qdrant_client.query_points(
collection_name="items",
prefetch=[
models.Prefetch(
query=dense_query,
using="dense",
limit=100,
),
models.Prefetch(
query=tsq[0].as_object(),
using="sparse",
limit=50,
)
],
query=models.FusionQuery(fusion=models.Fusion.RRF),
limit=5,
with_payload=True
)
# 5) Hybrid fusion + ColBERT
sparse_dense_prefetch = models.Prefetch(
prefetch=[
models.Prefetch(query=dense_query, using="dense", limit=100),
models.Prefetch(query=tsq[0].as_object(), using="sparse", limit=50),
],
limit=10,
query=models.FusionQuery(fusion=models.Fusion.RRF),
)
results["S+D-F-C"] = qdrant_client.query_points(
collection_name="items",
prefetch=[sparse_dense_prefetch],
query=late_query,
using="late",
limit=5,
with_payload=True
)
# 6) Hybrid no-fusion + ColBERT
old_prefetch = models.Prefetch(
prefetch=[
models.Prefetch(
prefetch=[
models.Prefetch(query=dense_query, using="dense", limit=100)
],
query=tsq[0].as_object(),
using="sparse",
limit=50,
)
]
)
results["S+D-C"] = qdrant_client.query_points(
collection_name="items",
prefetch=[old_prefetch],
query=late_query,
using="late",
limit=5,
with_payload=True
)
return results
#############################
# 2. Streamlit Main App
#############################
def main():
st.title("Semantic Search Sandbox")
# Initialize session state if not present
if "json_loaded" not in st.session_state:
st.session_state["json_loaded"] = False
if "qdrant_client" not in st.session_state:
st.session_state["qdrant_client"] = None
#######################################
# Show JSON input only if not loaded
#######################################
if not st.session_state["json_loaded"]:
st.subheader("Paste items.json Here")
default_json = """
{
"items": [
{
"name": "Example1",
"description": "An example item"
},
{
"name": "Example2",
"description": "Another item for demonstration"
}
]
}
""".strip()
json_text = st.text_area("JSON Input", value=default_json, height=300)
if st.button("Load JSON"):
try:
data = json.loads(json_text)
# Build Qdrant index in memory
st.session_state["qdrant_client"] = build_qdrant_index(data)
st.session_state["json_loaded"] = True
st.success("JSON loaded and Qdrant index built successfully!")
st.rerun()
except Exception as e:
st.error(f"Error parsing JSON: {e}")
else:
# The data is loaded, show a button to reset if you want to load new JSON
if st.button("Load a different JSON"):
st.session_state["json_loaded"] = False
st.session_state["qdrant_client"] = None
#st.experimental_rerun() # Refresh the page
else:
# Show the search interface
query_text = st.text_input("Search Query", value="ACB 1.0 Ports")
if st.button("Search"):
if st.session_state["qdrant_client"] is None:
st.warning("Please load valid JSON first.")
return
# Run queries
results_dict = run_queries(st.session_state["qdrant_client"], query_text)
# Display results in columns
col_names = list(results_dict.keys())
# You can split into multiple rows if there are more than 3
n_cols = 3
# We'll create enough columns to handle all search types
rows_needed = (len(col_names) + n_cols - 1) // n_cols
for row_idx in range(rows_needed):
cols = st.columns(n_cols)
for col_idx in range(n_cols):
method_idx = row_idx * n_cols + col_idx
if method_idx < len(col_names):
method = col_names[method_idx]
qdrant_result = results_dict[method]
with cols[col_idx]:
st.markdown(f"### {method}")
for point in qdrant_result.points:
name = point.payload.get("name", "Unnamed")
score = round(point.score, 4) if point.score else "N/A"
st.write(f"- **{name}** (score={score})")
if __name__ == "__main__":
main() |