Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse filesFix for infer_frames_depth
app.py
CHANGED
@@ -105,37 +105,65 @@ def process_frame(frame, max_res):
|
|
105 |
frame = cv2.resize(frame, (new_w, new_h))
|
106 |
return frame
|
107 |
|
108 |
-
def
|
109 |
-
"""
|
110 |
cap = cv2.VideoCapture(video_path)
|
111 |
if not cap.isOpened():
|
112 |
raise ValueError(f"Could not open video file: {video_path}")
|
113 |
|
114 |
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
116 |
|
117 |
-
#
|
118 |
-
if target_fps > 0
|
119 |
-
|
|
|
|
|
|
|
|
|
|
|
120 |
else:
|
121 |
-
|
|
|
122 |
|
123 |
frame_idx = 0
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
|
|
|
|
128 |
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
139 |
|
140 |
cap.release()
|
141 |
|
@@ -164,159 +192,110 @@ def infer_video_depth(
|
|
164 |
fps = video_info['fps']
|
165 |
frame_count = video_info['frame_count']
|
166 |
|
167 |
-
# Set up VideoWriters
|
168 |
-
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
169 |
-
|
170 |
-
# Setup for processing batches of frames
|
171 |
-
batch_size = 8 # Process frames in small batches to balance efficiency and memory usage
|
172 |
-
processed_frames = []
|
173 |
-
depth_frames = []
|
174 |
-
stitched_frames = []
|
175 |
-
|
176 |
-
# Initialize min/max depth values for depth normalization
|
177 |
-
d_min, d_max = float('inf'), float('-inf')
|
178 |
-
depth_values = []
|
179 |
-
|
180 |
-
# First pass: Process frames for depth inference and collect min/max depth values
|
181 |
print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
|
182 |
|
183 |
-
# Process
|
184 |
-
|
185 |
-
batch_count = 0
|
186 |
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
processed_frames.append(frame)
|
192 |
-
|
193 |
-
# When we have a full batch or reached the end, process it
|
194 |
-
if len(processed_frames) == batch_size or i == frame_count - 1:
|
195 |
-
# Process the batch for depth
|
196 |
-
with torch.no_grad():
|
197 |
-
batch_depths = video_depth_anything.infer_frames_depth(
|
198 |
-
processed_frames,
|
199 |
-
input_size=input_size,
|
200 |
-
device=DEVICE
|
201 |
-
)
|
202 |
-
|
203 |
-
# Collect depth statistics and frames
|
204 |
-
for depth in batch_depths:
|
205 |
-
d_min = min(d_min, depth.min())
|
206 |
-
d_max = max(d_max, depth.max())
|
207 |
-
depth_values.append(depth)
|
208 |
-
|
209 |
-
# Clear batch for next iteration
|
210 |
-
processed_frames = []
|
211 |
-
batch_count += 1
|
212 |
-
|
213 |
-
# Free up memory
|
214 |
-
torch.cuda.empty_cache()
|
215 |
-
gc.collect()
|
216 |
|
217 |
-
#
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
# Reprocess frames to save original and depth videos
|
222 |
-
frame_gen = frame_generator(input_video, max_len, target_fps, max_res)
|
223 |
-
depth_writer = cv2.VideoWriter(depth_vis_path, fourcc, fps, (width, height))
|
224 |
-
|
225 |
-
for i, (frame, depth) in enumerate(zip(frame_gen, depth_values)):
|
226 |
-
# Save original frame (convert RGB to BGR for OpenCV)
|
227 |
-
video_writer.write(cv2.cvtColor(frame, cv2.COLOR_RGB2BGR))
|
228 |
|
229 |
-
#
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
236 |
-
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
237 |
-
else:
|
238 |
-
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
239 |
-
else:
|
240 |
-
cmap = matplotlib.colormaps.get_cmap("inferno")
|
241 |
-
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
242 |
|
243 |
-
|
244 |
-
if blur > 0:
|
245 |
-
kernel_size = int(blur * 20) * 2 + 1 # Ensures an odd kernel size
|
246 |
-
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
247 |
|
248 |
-
#
|
249 |
-
|
|
|
|
|
|
|
|
|
|
|
250 |
|
251 |
-
|
252 |
-
|
|
|
|
|
|
|
|
|
|
|
253 |
|
254 |
# Process stitched video if requested
|
255 |
stitched_video_path = None
|
256 |
if stitch:
|
257 |
-
#
|
258 |
-
video_info_full = get_video_info(input_video, max_len, target_fps)
|
259 |
-
original_frame_gen = frame_generator(input_video, max_len, target_fps, -1) # No resizing
|
260 |
-
|
261 |
-
# Create a new writer for the stitched video
|
262 |
base_name = os.path.splitext(video_name)[0]
|
263 |
short_name = base_name[:20]
|
264 |
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
|
265 |
|
266 |
-
#
|
267 |
-
|
268 |
-
H_full, W_full = first_frame.shape[:2]
|
269 |
|
270 |
-
#
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
fps,
|
275 |
-
(W_full * 2, H_full) # Width is doubled for side-by-side
|
276 |
-
)
|
277 |
-
|
278 |
-
# Reset frame generator
|
279 |
-
original_frame_gen = frame_generator(input_video, max_len, target_fps, -1)
|
280 |
-
|
281 |
-
# Process each frame
|
282 |
-
for i, (rgb_full, depth) in enumerate(zip(original_frame_gen, depth_values)):
|
283 |
-
if i % 10 == 0:
|
284 |
-
print(f"Stitching frame {i+1}/{frame_count}")
|
285 |
|
286 |
-
#
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
296 |
else:
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
|
|
|
|
|
|
310 |
|
311 |
-
|
312 |
-
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
|
313 |
|
314 |
-
#
|
315 |
-
|
316 |
|
317 |
-
|
|
|
318 |
|
319 |
-
# Merge audio from the input video
|
320 |
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
321 |
cmd = [
|
322 |
"ffmpeg",
|
@@ -332,8 +311,12 @@ def infer_video_depth(
|
|
332 |
]
|
333 |
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
334 |
os.replace(temp_audio_path, stitched_video_path)
|
|
|
|
|
|
|
335 |
|
336 |
# Clean up
|
|
|
337 |
gc.collect()
|
338 |
torch.cuda.empty_cache()
|
339 |
|
|
|
105 |
frame = cv2.resize(frame, (new_w, new_h))
|
106 |
return frame
|
107 |
|
108 |
+
def read_video_frames_chunked(video_path, max_len=-1, target_fps=-1, max_res=-1, chunk_size=32):
|
109 |
+
"""Read video frames in chunks to avoid loading the entire video into memory."""
|
110 |
cap = cv2.VideoCapture(video_path)
|
111 |
if not cap.isOpened():
|
112 |
raise ValueError(f"Could not open video file: {video_path}")
|
113 |
|
114 |
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
115 |
+
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
116 |
+
|
117 |
+
# Determine actual number of frames to process
|
118 |
+
if max_len > 0 and max_len < total_frames:
|
119 |
+
frame_count = max_len
|
120 |
+
else:
|
121 |
+
frame_count = total_frames
|
122 |
|
123 |
+
# Use target_fps if specified
|
124 |
+
if target_fps > 0:
|
125 |
+
fps = target_fps
|
126 |
+
# Calculate frame skip if downsampling fps
|
127 |
+
if target_fps < original_fps:
|
128 |
+
skip = int(round(original_fps / target_fps)) - 1
|
129 |
+
else:
|
130 |
+
skip = 0
|
131 |
else:
|
132 |
+
fps = original_fps
|
133 |
+
skip = 0
|
134 |
|
135 |
frame_idx = 0
|
136 |
+
processed_count = 0
|
137 |
+
|
138 |
+
while processed_count < frame_count:
|
139 |
+
frames_chunk = []
|
140 |
+
# Read frames up to chunk size or remaining frames
|
141 |
+
chunk_limit = min(chunk_size, frame_count - processed_count)
|
142 |
|
143 |
+
while len(frames_chunk) < chunk_limit:
|
144 |
+
ret, frame = cap.read()
|
145 |
+
if not ret:
|
146 |
+
break
|
147 |
+
|
148 |
+
# Process frame if we're not skipping it
|
149 |
+
if frame_idx % (skip + 1) == 0:
|
150 |
+
# Convert from BGR to RGB
|
151 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
152 |
+
# Resize if necessary
|
153 |
+
frame = process_frame(frame, max_res)
|
154 |
+
frames_chunk.append(frame)
|
155 |
+
processed_count += 1
|
156 |
+
|
157 |
+
if processed_count >= frame_count:
|
158 |
+
break
|
159 |
+
|
160 |
+
frame_idx += 1
|
161 |
+
|
162 |
+
if frames_chunk:
|
163 |
+
yield frames_chunk, fps
|
164 |
+
|
165 |
+
if processed_count >= frame_count or len(frames_chunk) < chunk_limit:
|
166 |
+
break
|
167 |
|
168 |
cap.release()
|
169 |
|
|
|
192 |
fps = video_info['fps']
|
193 |
frame_count = video_info['frame_count']
|
194 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
195 |
print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
|
196 |
|
197 |
+
# Process the video in chunks to manage memory
|
198 |
+
chunk_size = 32 # Adjust based on available memory
|
|
|
199 |
|
200 |
+
# We'll collect depths as we go to calculate global min/max
|
201 |
+
all_depths = []
|
202 |
+
all_processed_frames = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
203 |
|
204 |
+
# First pass to collect frames and depths
|
205 |
+
frame_idx = 0
|
206 |
+
for frames_chunk, fps in read_video_frames_chunked(input_video, max_len, target_fps, max_res, chunk_size):
|
207 |
+
print(f"Processing chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
208 |
|
209 |
+
# Process this chunk of frames
|
210 |
+
depths, _ = video_depth_anything.infer_video_depth(frames_chunk, fps, input_size=input_size, device=DEVICE)
|
211 |
+
|
212 |
+
# Store results (we'll need both for the output videos)
|
213 |
+
all_processed_frames.extend(frames_chunk)
|
214 |
+
all_depths.extend(depths)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
|
216 |
+
frame_idx += len(frames_chunk)
|
|
|
|
|
|
|
217 |
|
218 |
+
# Free memory
|
219 |
+
gc.collect()
|
220 |
+
torch.cuda.empty_cache()
|
221 |
+
|
222 |
+
# Calculate global min/max for depth normalization
|
223 |
+
depths_array = np.array(all_depths)
|
224 |
+
d_min, d_max = depths_array.min(), depths_array.max()
|
225 |
|
226 |
+
# Save the preprocessed video and depth visualization
|
227 |
+
save_video(all_processed_frames, processed_video_path, fps=fps)
|
228 |
+
save_video(all_depths, depth_vis_path, fps=fps, is_depths=True)
|
229 |
+
|
230 |
+
# Free some memory before stitching
|
231 |
+
del all_processed_frames
|
232 |
+
gc.collect()
|
233 |
|
234 |
# Process stitched video if requested
|
235 |
stitched_video_path = None
|
236 |
if stitch:
|
237 |
+
# Use only the first 20 characters of the base name for the output filename
|
|
|
|
|
|
|
|
|
238 |
base_name = os.path.splitext(video_name)[0]
|
239 |
short_name = base_name[:20]
|
240 |
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
|
241 |
|
242 |
+
# For stitching: read the original video in full resolution and stitch frames one by one
|
243 |
+
stitched_frames = []
|
|
|
244 |
|
245 |
+
# Process in chunks for memory efficiency
|
246 |
+
frame_idx = 0
|
247 |
+
for frames_chunk, _ in read_video_frames_chunked(input_video, max_len, target_fps, -1, chunk_size): # No max_res for original resolution
|
248 |
+
print(f"Stitching chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
249 |
|
250 |
+
# Process each frame in the chunk
|
251 |
+
for i, rgb_full in enumerate(frames_chunk):
|
252 |
+
depth_idx = frame_idx + i
|
253 |
+
if depth_idx >= len(all_depths):
|
254 |
+
break
|
255 |
+
|
256 |
+
depth_frame = all_depths[depth_idx]
|
257 |
+
|
258 |
+
# Normalize the depth frame
|
259 |
+
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
260 |
+
|
261 |
+
# Generate depth visualization
|
262 |
+
if grayscale:
|
263 |
+
if convert_from_color:
|
264 |
+
# Convert from color to grayscale
|
265 |
+
cmap = matplotlib.colormaps.get_cmap("inferno")
|
266 |
+
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
267 |
+
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
268 |
+
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
269 |
+
else:
|
270 |
+
# Directly use grayscale
|
271 |
+
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
272 |
else:
|
273 |
+
# Use color visualization
|
274 |
+
cmap = matplotlib.colormaps.get_cmap("inferno")
|
275 |
+
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
276 |
+
|
277 |
+
# Apply blur if requested
|
278 |
+
if blur > 0:
|
279 |
+
kernel_size = int(blur * 20) * 2 + 1 # Ensures odd kernel size
|
280 |
+
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
281 |
+
|
282 |
+
# Resize depth visualization to match original resolution
|
283 |
+
H_full, W_full = rgb_full.shape[:2]
|
284 |
+
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
|
285 |
+
|
286 |
+
# Concatenate RGB and depth
|
287 |
+
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
|
288 |
+
stitched_frames.append(stitched)
|
289 |
|
290 |
+
frame_idx += len(frames_chunk)
|
|
|
291 |
|
292 |
+
# Free memory after processing each chunk
|
293 |
+
gc.collect()
|
294 |
|
295 |
+
# Save the stitched video
|
296 |
+
save_video(stitched_frames, stitched_video_path, fps=fps)
|
297 |
|
298 |
+
# Merge audio from the input video
|
299 |
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
300 |
cmd = [
|
301 |
"ffmpeg",
|
|
|
311 |
]
|
312 |
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
313 |
os.replace(temp_audio_path, stitched_video_path)
|
314 |
+
|
315 |
+
# Free memory
|
316 |
+
del stitched_frames
|
317 |
|
318 |
# Clean up
|
319 |
+
del all_depths
|
320 |
gc.collect()
|
321 |
torch.cuda.empty_cache()
|
322 |
|