Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -5,16 +5,18 @@ import cv2
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import matplotlib.cm as cm
|
8 |
-
import matplotlib
|
9 |
import subprocess
|
10 |
import sys
|
11 |
import spaces
|
12 |
|
13 |
from video_depth_anything.video_depth import VideoDepthAnything
|
14 |
-
from utils.dc_utils import save_video
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
|
17 |
# Examples for the Gradio Demo.
|
|
|
|
|
18 |
examples = [
|
19 |
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
20 |
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
@@ -60,114 +62,8 @@ title = "# Video Depth Anything + RGBD sbs output"
|
|
60 |
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
|
61 |
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
|
62 |
|
63 |
-
def get_video_info(video_path, max_len=-1, target_fps=-1):
|
64 |
-
"""Extract video information without loading all frames into memory."""
|
65 |
-
cap = cv2.VideoCapture(video_path)
|
66 |
-
if not cap.isOpened():
|
67 |
-
raise ValueError(f"Could not open video file: {video_path}")
|
68 |
-
|
69 |
-
# Get video properties
|
70 |
-
original_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
71 |
-
original_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
72 |
-
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
73 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
74 |
-
|
75 |
-
# Adjust based on max_len parameter
|
76 |
-
if max_len > 0 and max_len < total_frames:
|
77 |
-
frame_count = max_len
|
78 |
-
else:
|
79 |
-
frame_count = total_frames
|
80 |
-
|
81 |
-
# Use target_fps if specified
|
82 |
-
if target_fps > 0:
|
83 |
-
fps = target_fps
|
84 |
-
else:
|
85 |
-
fps = original_fps
|
86 |
-
|
87 |
-
cap.release()
|
88 |
-
|
89 |
-
return {
|
90 |
-
'width': original_width,
|
91 |
-
'height': original_height,
|
92 |
-
'fps': fps,
|
93 |
-
'original_fps': original_fps,
|
94 |
-
'frame_count': frame_count,
|
95 |
-
'total_frames': total_frames
|
96 |
-
}
|
97 |
-
|
98 |
-
def process_frame(frame, max_res):
|
99 |
-
"""Process a single frame to the desired resolution."""
|
100 |
-
if max_res > 0:
|
101 |
-
h, w = frame.shape[:2]
|
102 |
-
scale = min(max_res / w, max_res / h)
|
103 |
-
if scale < 1:
|
104 |
-
new_w, new_h = int(w * scale), int(h * scale)
|
105 |
-
frame = cv2.resize(frame, (new_w, new_h))
|
106 |
-
return frame
|
107 |
-
|
108 |
-
def read_video_frames_chunked(video_path, max_len=-1, target_fps=-1, max_res=-1, chunk_size=32):
|
109 |
-
"""Read video frames in chunks to avoid loading the entire video into memory."""
|
110 |
-
cap = cv2.VideoCapture(video_path)
|
111 |
-
if not cap.isOpened():
|
112 |
-
raise ValueError(f"Could not open video file: {video_path}")
|
113 |
-
|
114 |
-
original_fps = cap.get(cv2.CAP_PROP_FPS)
|
115 |
-
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
116 |
-
|
117 |
-
# Determine actual number of frames to process
|
118 |
-
if max_len > 0 and max_len < total_frames:
|
119 |
-
frame_count = max_len
|
120 |
-
else:
|
121 |
-
frame_count = total_frames
|
122 |
-
|
123 |
-
# Use target_fps if specified
|
124 |
-
if target_fps > 0:
|
125 |
-
fps = target_fps
|
126 |
-
# Calculate frame skip if downsampling fps
|
127 |
-
if target_fps < original_fps:
|
128 |
-
skip = int(round(original_fps / target_fps)) - 1
|
129 |
-
else:
|
130 |
-
skip = 0
|
131 |
-
else:
|
132 |
-
fps = original_fps
|
133 |
-
skip = 0
|
134 |
-
|
135 |
-
frame_idx = 0
|
136 |
-
processed_count = 0
|
137 |
-
|
138 |
-
while processed_count < frame_count:
|
139 |
-
frames_chunk = []
|
140 |
-
# Read frames up to chunk size or remaining frames
|
141 |
-
chunk_limit = min(chunk_size, frame_count - processed_count)
|
142 |
-
|
143 |
-
while len(frames_chunk) < chunk_limit:
|
144 |
-
ret, frame = cap.read()
|
145 |
-
if not ret:
|
146 |
-
break
|
147 |
-
|
148 |
-
# Process frame if we're not skipping it
|
149 |
-
if frame_idx % (skip + 1) == 0:
|
150 |
-
# Convert from BGR to RGB
|
151 |
-
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
152 |
-
# Resize if necessary
|
153 |
-
frame = process_frame(frame, max_res)
|
154 |
-
frames_chunk.append(frame)
|
155 |
-
processed_count += 1
|
156 |
-
|
157 |
-
if processed_count >= frame_count:
|
158 |
-
break
|
159 |
-
|
160 |
-
frame_idx += 1
|
161 |
-
|
162 |
-
if frames_chunk:
|
163 |
-
yield frames_chunk, fps
|
164 |
-
|
165 |
-
if processed_count >= frame_count or len(frames_chunk) < chunk_limit:
|
166 |
-
break
|
167 |
-
|
168 |
-
cap.release()
|
169 |
-
|
170 |
@spaces.GPU(enable_queue=True)
|
|
|
171 |
def infer_video_depth(
|
172 |
input_video: str,
|
173 |
max_len: int = -1,
|
@@ -180,122 +76,67 @@ def infer_video_depth(
|
|
180 |
output_dir: str = './outputs',
|
181 |
input_size: int = 518,
|
182 |
):
|
|
|
|
|
|
|
|
|
|
|
|
|
183 |
if not os.path.exists(output_dir):
|
184 |
os.makedirs(output_dir)
|
185 |
-
|
186 |
-
|
187 |
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
|
188 |
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
fps = video_info['fps']
|
193 |
-
frame_count = video_info['frame_count']
|
194 |
-
|
195 |
-
print(f"Processing video: {input_video}, {frame_count} frames at {fps} fps")
|
196 |
-
|
197 |
-
# Process the video in chunks to manage memory
|
198 |
-
chunk_size = 32 # Adjust based on available memory
|
199 |
-
|
200 |
-
# We'll collect depths as we go to calculate global min/max
|
201 |
-
all_depths = []
|
202 |
-
all_processed_frames = []
|
203 |
-
|
204 |
-
# First pass to collect frames and depths
|
205 |
-
frame_idx = 0
|
206 |
-
for frames_chunk, fps in read_video_frames_chunked(input_video, max_len, target_fps, max_res, chunk_size):
|
207 |
-
print(f"Processing chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
|
208 |
-
|
209 |
-
# Process this chunk of frames
|
210 |
-
depths, _ = video_depth_anything.infer_video_depth(frames_chunk, fps, input_size=input_size, device=DEVICE)
|
211 |
-
|
212 |
-
# Store results (we'll need both for the output videos)
|
213 |
-
all_processed_frames.extend(frames_chunk)
|
214 |
-
all_depths.extend(depths)
|
215 |
-
|
216 |
-
frame_idx += len(frames_chunk)
|
217 |
-
|
218 |
-
# Free memory
|
219 |
-
gc.collect()
|
220 |
-
torch.cuda.empty_cache()
|
221 |
-
|
222 |
-
# Calculate global min/max for depth normalization
|
223 |
-
depths_array = np.array(all_depths)
|
224 |
-
d_min, d_max = depths_array.min(), depths_array.max()
|
225 |
-
|
226 |
-
# Save the preprocessed video and depth visualization
|
227 |
-
save_video(all_processed_frames, processed_video_path, fps=fps)
|
228 |
-
save_video(all_depths, depth_vis_path, fps=fps, is_depths=True)
|
229 |
-
|
230 |
-
# Free some memory before stitching
|
231 |
-
del all_processed_frames
|
232 |
-
gc.collect()
|
233 |
-
|
234 |
-
# Process stitched video if requested
|
235 |
stitched_video_path = None
|
236 |
if stitch:
|
237 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
238 |
base_name = os.path.splitext(video_name)[0]
|
239 |
short_name = base_name[:20]
|
240 |
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
|
241 |
-
|
242 |
-
# For stitching: read the original video in full resolution and stitch frames one by one
|
243 |
-
stitched_frames = []
|
244 |
-
|
245 |
-
# Process in chunks for memory efficiency
|
246 |
-
frame_idx = 0
|
247 |
-
for frames_chunk, _ in read_video_frames_chunked(input_video, max_len, target_fps, -1, chunk_size): # No max_res for original resolution
|
248 |
-
print(f"Stitching chunk: frames {frame_idx+1}-{frame_idx+len(frames_chunk)}/{frame_count}")
|
249 |
-
|
250 |
-
# Process each frame in the chunk
|
251 |
-
for i, rgb_full in enumerate(frames_chunk):
|
252 |
-
depth_idx = frame_idx + i
|
253 |
-
if depth_idx >= len(all_depths):
|
254 |
-
break
|
255 |
-
|
256 |
-
depth_frame = all_depths[depth_idx]
|
257 |
-
|
258 |
-
# Normalize the depth frame
|
259 |
-
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
260 |
-
|
261 |
-
# Generate depth visualization
|
262 |
-
if grayscale:
|
263 |
-
if convert_from_color:
|
264 |
-
# Convert from color to grayscale
|
265 |
-
cmap = matplotlib.colormaps.get_cmap("inferno")
|
266 |
-
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
267 |
-
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
268 |
-
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
269 |
-
else:
|
270 |
-
# Directly use grayscale
|
271 |
-
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
272 |
-
else:
|
273 |
-
# Use color visualization
|
274 |
-
cmap = matplotlib.colormaps.get_cmap("inferno")
|
275 |
-
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
276 |
-
|
277 |
-
# Apply blur if requested
|
278 |
-
if blur > 0:
|
279 |
-
kernel_size = int(blur * 20) * 2 + 1 # Ensures odd kernel size
|
280 |
-
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
281 |
-
|
282 |
-
# Resize depth visualization to match original resolution
|
283 |
-
H_full, W_full = rgb_full.shape[:2]
|
284 |
-
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
|
285 |
-
|
286 |
-
# Concatenate RGB and depth
|
287 |
-
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
|
288 |
-
stitched_frames.append(stitched)
|
289 |
-
|
290 |
-
frame_idx += len(frames_chunk)
|
291 |
-
|
292 |
-
# Free memory after processing each chunk
|
293 |
-
gc.collect()
|
294 |
-
|
295 |
-
# Save the stitched video
|
296 |
save_video(stitched_frames, stitched_video_path, fps=fps)
|
297 |
|
298 |
-
# Merge audio from the input video
|
299 |
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
300 |
cmd = [
|
301 |
"ffmpeg",
|
@@ -311,15 +152,11 @@ def infer_video_depth(
|
|
311 |
]
|
312 |
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
313 |
os.replace(temp_audio_path, stitched_video_path)
|
314 |
-
|
315 |
-
# Free memory
|
316 |
-
del stitched_frames
|
317 |
-
|
318 |
-
# Clean up
|
319 |
-
del all_depths
|
320 |
gc.collect()
|
321 |
torch.cuda.empty_cache()
|
322 |
-
|
|
|
323 |
return [processed_video_path, depth_vis_path, stitched_video_path]
|
324 |
|
325 |
def construct_demo():
|
@@ -371,4 +208,6 @@ def construct_demo():
|
|
371 |
|
372 |
if __name__ == "__main__":
|
373 |
demo = construct_demo()
|
|
|
|
|
374 |
demo.queue(max_size=2).launch()
|
|
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
import matplotlib.cm as cm
|
8 |
+
import matplotlib # New import for the updated colormap API
|
9 |
import subprocess
|
10 |
import sys
|
11 |
import spaces
|
12 |
|
13 |
from video_depth_anything.video_depth import VideoDepthAnything
|
14 |
+
from utils.dc_utils import read_video_frames, save_video
|
15 |
from huggingface_hub import hf_hub_download
|
16 |
|
17 |
# Examples for the Gradio Demo.
|
18 |
+
# Each example now contains 8 parameters:
|
19 |
+
# [video_path, max_len, target_fps, max_res, stitch, grayscale, convert_from_color, blur]
|
20 |
examples = [
|
21 |
['assets/example_videos/octopus_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
22 |
['assets/example_videos/chicken_01.mp4', -1, -1, 1280, True, True, True, 0.3],
|
|
|
62 |
description = """**Video Depth Anything** + RGBD sbs output for viewing with Looking Glass Factory displays.
|
63 |
Please refer to our [paper](https://arxiv.org/abs/2501.12375), [project page](https://videodepthanything.github.io/), and [github](https://github.com/DepthAnything/Video-Depth-Anything) for more details."""
|
64 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
@spaces.GPU(enable_queue=True)
|
66 |
+
|
67 |
def infer_video_depth(
|
68 |
input_video: str,
|
69 |
max_len: int = -1,
|
|
|
76 |
output_dir: str = './outputs',
|
77 |
input_size: int = 518,
|
78 |
):
|
79 |
+
# 1. Read input video frames for inference (downscaled to max_res).
|
80 |
+
frames, target_fps = read_video_frames(input_video, max_len, target_fps, max_res)
|
81 |
+
# 2. Perform depth inference using the model.
|
82 |
+
depths, fps = video_depth_anything.infer_video_depth(frames, target_fps, input_size=input_size, device=DEVICE)
|
83 |
+
|
84 |
+
video_name = os.path.basename(input_video)
|
85 |
if not os.path.exists(output_dir):
|
86 |
os.makedirs(output_dir)
|
87 |
+
|
88 |
+
# Save the preprocessed (RGB) video and the generated depth visualization.
|
89 |
processed_video_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_src.mp4')
|
90 |
depth_vis_path = os.path.join(output_dir, os.path.splitext(video_name)[0] + '_vis.mp4')
|
91 |
+
save_video(frames, processed_video_path, fps=fps)
|
92 |
+
save_video(depths, depth_vis_path, fps=fps, is_depths=True)
|
93 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
94 |
stitched_video_path = None
|
95 |
if stitch:
|
96 |
+
# For stitching: read the original video in full resolution (without downscaling).
|
97 |
+
full_frames, _ = read_video_frames(input_video, max_len, target_fps, max_res=-1)
|
98 |
+
# For each frame, create a visual depth image from the inferenced depths.
|
99 |
+
d_min, d_max = depths.min(), depths.max()
|
100 |
+
stitched_frames = []
|
101 |
+
for i in range(min(len(full_frames), len(depths))):
|
102 |
+
rgb_full = full_frames[i] # Full-resolution RGB frame.
|
103 |
+
depth_frame = depths[i]
|
104 |
+
# Normalize the depth frame to the range [0, 255].
|
105 |
+
depth_norm = ((depth_frame - d_min) / (d_max - d_min) * 255).astype(np.uint8)
|
106 |
+
# Generate depth visualization:
|
107 |
+
if grayscale:
|
108 |
+
if convert_from_color:
|
109 |
+
# First, generate a color depth image using the inferno colormap,
|
110 |
+
# then convert that color image to grayscale.
|
111 |
+
cmap = matplotlib.colormaps.get_cmap("inferno")
|
112 |
+
depth_color = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
113 |
+
depth_gray = cv2.cvtColor(depth_color, cv2.COLOR_RGB2GRAY)
|
114 |
+
depth_vis = np.stack([depth_gray] * 3, axis=-1)
|
115 |
+
else:
|
116 |
+
# Directly generate a grayscale image from the normalized depth values.
|
117 |
+
depth_vis = np.stack([depth_norm] * 3, axis=-1)
|
118 |
+
else:
|
119 |
+
# Generate a color depth image using the inferno colormap.
|
120 |
+
cmap = matplotlib.colormaps.get_cmap("inferno")
|
121 |
+
depth_vis = (cmap(depth_norm / 255.0)[..., :3] * 255).astype(np.uint8)
|
122 |
+
# Apply Gaussian blur if requested.
|
123 |
+
if blur > 0:
|
124 |
+
kernel_size = int(blur * 20) * 2 + 1 # Ensures an odd kernel size.
|
125 |
+
depth_vis = cv2.GaussianBlur(depth_vis, (kernel_size, kernel_size), 0)
|
126 |
+
# Resize the depth visualization to match the full-resolution RGB frame.
|
127 |
+
H_full, W_full = rgb_full.shape[:2]
|
128 |
+
depth_vis_resized = cv2.resize(depth_vis, (W_full, H_full))
|
129 |
+
# Concatenate the full-resolution RGB frame (left) and the resized depth visualization (right).
|
130 |
+
stitched = cv2.hconcat([rgb_full, depth_vis_resized])
|
131 |
+
stitched_frames.append(stitched)
|
132 |
+
stitched_frames = np.array(stitched_frames)
|
133 |
+
# Use only the first 20 characters of the base name for the output filename and append '_RGBD.mp4'
|
134 |
base_name = os.path.splitext(video_name)[0]
|
135 |
short_name = base_name[:20]
|
136 |
stitched_video_path = os.path.join(output_dir, short_name + '_RGBD.mp4')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
save_video(stitched_frames, stitched_video_path, fps=fps)
|
138 |
|
139 |
+
# Merge audio from the input video into the stitched video using ffmpeg.
|
140 |
temp_audio_path = stitched_video_path.replace('_RGBD.mp4', '_RGBD_audio.mp4')
|
141 |
cmd = [
|
142 |
"ffmpeg",
|
|
|
152 |
]
|
153 |
subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE)
|
154 |
os.replace(temp_audio_path, stitched_video_path)
|
155 |
+
|
|
|
|
|
|
|
|
|
|
|
156 |
gc.collect()
|
157 |
torch.cuda.empty_cache()
|
158 |
+
|
159 |
+
# Return the preprocessed RGB video, depth visualization, and (if created) the stitched video.
|
160 |
return [processed_video_path, depth_vis_path, stitched_video_path]
|
161 |
|
162 |
def construct_demo():
|
|
|
208 |
|
209 |
if __name__ == "__main__":
|
210 |
demo = construct_demo()
|
211 |
+
#demo.queue() # Enable asynchronous processing.
|
212 |
+
#demo.launch(share=True)
|
213 |
demo.queue(max_size=2).launch()
|