testing-roboflow / dino.txt
muhammadsalmanalfaridzi's picture
Update dino.txt
c440f41 verified
import gradio as gr
import cv2
import numpy as np
import tempfile
import os
import requests
from dds_cloudapi_sdk import Config, Client
from dds_cloudapi_sdk.tasks.dinox import DinoxTask
from dds_cloudapi_sdk import TextPrompt
from dds_cloudapi_sdk.tasks.types import DetectionTarget
from roboflow import Roboflow
from dotenv import load_dotenv
# ========== Konfigurasi ==========
load_dotenv()
# Roboflow Config
rf_api_key = os.getenv("ROBOFLOW_API_KEY")
workspace = os.getenv("ROBOFLOW_WORKSPACE")
project_name = os.getenv("ROBOFLOW_PROJECT")
model_version = int(os.getenv("ROBOFLOW_MODEL_VERSION"))
# DINO-X Config
DINOX_API_KEY = os.getenv("DINO_X_API_KEY")
DINOX_PROMPT = "beverage . bottle . cans . boxed milk . milk"
# Inisialisasi Model YOLO (Roboflow)
rf = Roboflow(api_key=rf_api_key)
project = rf.workspace(workspace).project(project_name)
yolo_model = project.version(model_version).model
# Inisialisasi DINO-X API Client
dinox_config = Config(DINOX_API_KEY)
dinox_client = Client(dinox_config)
# Fungsi untuk mendeteksi objek pada gambar dan video
def detect_combined(image_path_or_video_path, is_video=False):
# Jika input adalah video
if is_video:
return detect_objects_in_video(image_path_or_video_path)
# Jika input adalah gambar
return detect_objects_in_image(image_path_or_video_path)
def detect_objects_in_image(image_path):
try:
# Membaca gambar
img = cv2.imread(image_path)
# --- Deteksi menggunakan YOLO (Nestlé) ---
yolo_pred = yolo_model.predict(image_path, confidence=50, overlap=80).json()
# Hitung produk Nestlé per kelas
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
# --- Deteksi menggunakan DINO-X (Unclassified Products) ---
image_url = dinox_client.upload_file(image_path)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=DINOX_PROMPT)],
bbox_threshold=0.25,
targets=[DetectionTarget.BBox]
)
dinox_client.run_task(task)
dinox_pred = task.result.objects
# Hitung produk kompetitor yang tidak tumpang tindih dengan deteksi YOLO
competitor_class_count = {}
competitor_boxes = []
for obj in dinox_pred:
dinox_box = obj.bbox
# Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
if not is_overlap(dinox_box, nestle_boxes): # Ignore if overlap with YOLO detections
class_name = obj.category.strip().lower()
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": dinox_box,
"confidence": obj.score
})
# --- Overlay Teks untuk Total Produk ---
nestle_count_text = ""
total_nestle = 0
for class_name, count in nestle_class_count.items():
nestle_count_text += f"{class_name}: {count}\n"
total_nestle += count
nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}"
unclassified_count_text = ""
total_unclassified = 0
for class_name, count in competitor_class_count.items():
unclassified_count_text += f"{class_name}: {count}\n"
total_unclassified += count
unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}"
# --- Visualisasi Deteksi YOLO (Nestlé) ---
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(img, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
cv2.putText(img, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
# --- Visualisasi Deteksi DINO-X (Unclassified) ---
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
display_name = "unclassified"
cv2.rectangle(img, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(img, f"{display_name} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# Simpan gambar output
output_path = "/tmp/combined_output_image.jpg"
cv2.imwrite(output_path, img)
return output_path, nestle_count_text + "\n" + unclassified_count_text
except Exception as e:
return image_path, f"Error: {str(e)}"
def detect_objects_in_video(video_path):
temp_output_path = "/tmp/output_video.mp4"
temp_frames_dir = tempfile.mkdtemp()
frame_count = 0
previous_detections = {} # Untuk menyimpan deteksi objek dari frame sebelumnya
# Membuka video
video = cv2.VideoCapture(video_path)
frame_rate = int(video.get(cv2.CAP_PROP_FPS))
frame_width = int(video.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(video.get(cv2.CAP_PROP_FRAME_HEIGHT))
frame_size = (frame_width, frame_height)
# VideoWriter untuk menyimpan hasil video
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
output_video = cv2.VideoWriter(temp_output_path, fourcc, frame_rate, frame_size)
while True:
ret, frame = video.read()
if not ret:
break
# Simpan frame sementara untuk prediksi
frame_path = os.path.join(temp_frames_dir, f"frame_{frame_count}.jpg")
cv2.imwrite(frame_path, frame)
# --- Deteksi menggunakan YOLO (Nestlé) ---
yolo_pred = yolo_model.predict(frame_path, confidence=50, overlap=80).json()
# Hitung produk Nestlé per kelas
nestle_class_count = {}
nestle_boxes = []
for pred in yolo_pred['predictions']:
class_name = pred['class']
nestle_class_count[class_name] = nestle_class_count.get(class_name, 0) + 1
nestle_boxes.append((pred['x'], pred['y'], pred['width'], pred['height']))
# --- Deteksi menggunakan DINO-X (Unclassified Products) ---
image_url = dinox_client.upload_file(frame_path)
task = DinoxTask(
image_url=image_url,
prompts=[TextPrompt(text=DINOX_PROMPT)],
bbox_threshold=0.25,
targets=[DetectionTarget.BBox]
)
dinox_client.run_task(task)
dinox_pred = task.result.objects
# Hitung produk kompetitor yang tidak tumpang tindih dengan deteksi YOLO
competitor_class_count = {}
competitor_boxes = []
for obj in dinox_pred:
dinox_box = obj.bbox
# Filter objek yang sudah terdeteksi oleh YOLO (Overlap detection)
if not is_overlap(dinox_box, nestle_boxes): # Ignore if overlap with YOLO detections
class_name = obj.category.strip().lower()
competitor_class_count[class_name] = competitor_class_count.get(class_name, 0) + 1
competitor_boxes.append({
"class": class_name,
"box": dinox_box,
"confidence": obj.score
})
# --- Overlay Teks untuk Total Produk ---
nestle_count_text = ""
total_nestle = 0
for class_name, count in nestle_class_count.items():
nestle_count_text += f"{class_name}: {count}\n"
total_nestle += count
nestle_count_text += f"\nTotal Nestlé Products: {total_nestle}"
unclassified_count_text = ""
total_unclassified = 0
for class_name, count in competitor_class_count.items():
unclassified_count_text += f"{class_name}: {count}\n"
total_unclassified += count
unclassified_count_text += f"\nTotal Unclassified Products: {total_unclassified}"
# Overlay teks ke frame
y_offset = 20
for line in nestle_count_text.split("\n"):
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_offset += 30
y_offset += 30 # Slight gap between sections
for line in unclassified_count_text.split("\n"):
cv2.putText(frame, line, (10, y_offset), cv2.FONT_HERSHEY_SIMPLEX, 0.6, (255, 255, 255), 2)
y_offset += 30
# --- Visualisasi Deteksi YOLO (Nestlé) ---
for pred in yolo_pred['predictions']:
x, y, w, h = pred['x'], pred['y'], pred['width'], pred['height']
cv2.rectangle(frame, (int(x-w/2), int(y-h/2)), (int(x+w/2), int(y+h/2)), (0,255,0), 2)
cv2.putText(frame, pred['class'], (int(x-w/2), int(y-h/2-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0,255,0), 2)
# --- Visualisasi Deteksi DINO-X (Unclassified) ---
for comp in competitor_boxes:
x1, y1, x2, y2 = comp['box']
display_name = "unclassified"
cv2.rectangle(frame, (int(x1), int(y1)), (int(x2), int(y2)), (0, 0, 255), 2)
cv2.putText(frame, f"{display_name} {comp['confidence']:.2f}",
(int(x1), int(y1-10)), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)
# Tulis frame ke video output
output_video.write(frame)
frame_count += 1
video.release()
output_video.release()
return temp_output_path
def is_overlap(box1, boxes2, threshold=0.3):
# Fungsi untuk deteksi overlap bounding box
x1_min, y1_min, x1_max, y1_max = box1
for b2 in boxes2:
x2, y2, w2, h2 = b2
x2_min = x2 - w2/2
x2_max = x2 + w2/2
y2_min = y2 - h2/2
y2_max = y2 + h2/2
# Hitung area overlap
dx = min(x1_max, x2_max) - max(x1_min, x2_min)
dy = min(y1_max, y2_max) - max(y1_min, y2_min)
if (dx >= 0) and (dy >= 0):
area_overlap = dx * dy
area_box1 = (x1_max - x1_min) * (y1_max - y1_min)
if area_overlap / area_box1 > threshold:
return True
return False
# ========== Gradio Interface ==========
with gr.Blocks(theme=gr.themes.Base(primary_hue="teal", secondary_hue="teal", neutral_hue="slate")) as iface:
gr.Markdown("""<div style="text-align: center;"><h1>NESTLE - STOCK COUNTING</h1></div>""")
with gr.Row():
with gr.Column():
input_image = gr.Image(type="pil", label="Input Image")
detect_image_button = gr.Button("Detect Image")
output_image = gr.Image(label="Detect Object")
output_text = gr.Textbox(label="Counting Object")
detect_image_button.click(fn=detect_combined, inputs=input_image, outputs=[output_image, output_text])
with gr.Column():
input_video = gr.Video(label="Input Video")
detect_video_button = gr.Button("Detect Video")
output_video = gr.Video(label="Output Video")
detect_video_button.click(fn=detect_objects_in_video, inputs=input_video, outputs=[output_video])
iface.launch()