Spaces:
Running
on
Zero
Running
on
Zero
# Open Source Model Licensed under the Apache License Version 2.0 | |
# and Other Licenses of the Third-Party Components therein: | |
# The below Model in this distribution may have been modified by THL A29 Limited | |
# ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
# Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
# The below software and/or models in this distribution may have been | |
# modified by THL A29 Limited ("Tencent Modifications"). | |
# All Tencent Modifications are Copyright (C) THL A29 Limited. | |
# Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
# except for the third-party components listed below. | |
# Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
# in the repsective licenses of these third-party components. | |
# Users must comply with all terms and conditions of original licenses of these third-party | |
# components and must ensure that the usage of the third party components adheres to | |
# all relevant laws and regulations. | |
# For avoidance of doubts, Hunyuan 3D means the large language models and | |
# their software and algorithms, including trained model weights, parameters (including | |
# optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
# fine-tuning enabling code and other elements of the foregoing made publicly available | |
# by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
import copy | |
import json | |
import os | |
from typing import Any, Dict, Optional | |
import torch | |
import torch.nn as nn | |
from diffusers.models import UNet2DConditionModel | |
from diffusers.models.attention_processor import Attention | |
from diffusers.models.transformers.transformer_2d import BasicTransformerBlock | |
from einops import rearrange | |
def _chunked_feed_forward(ff: nn.Module, hidden_states: torch.Tensor, chunk_dim: int, chunk_size: int): | |
# "feed_forward_chunk_size" can be used to save memory | |
if hidden_states.shape[chunk_dim] % chunk_size != 0: | |
raise ValueError( | |
f"`hidden_states` dimension to be chunked: {hidden_states.shape[chunk_dim]} has to be divisible by chunk size: {chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`." | |
) | |
num_chunks = hidden_states.shape[chunk_dim] // chunk_size | |
ff_output = torch.cat( | |
[ff(hid_slice) for hid_slice in hidden_states.chunk(num_chunks, dim=chunk_dim)], | |
dim=chunk_dim, | |
) | |
return ff_output | |
class Basic2p5DTransformerBlock(torch.nn.Module): | |
def __init__(self, transformer: BasicTransformerBlock, layer_name, use_ma=True, use_ra=True) -> None: | |
super().__init__() | |
self.transformer = transformer | |
self.layer_name = layer_name | |
self.use_ma = use_ma | |
self.use_ra = use_ra | |
# multiview attn | |
if self.use_ma: | |
self.attn_multiview = Attention( | |
query_dim=self.dim, | |
heads=self.num_attention_heads, | |
dim_head=self.attention_head_dim, | |
dropout=self.dropout, | |
bias=self.attention_bias, | |
cross_attention_dim=None, | |
upcast_attention=self.attn1.upcast_attention, | |
out_bias=True, | |
) | |
# ref attn | |
if self.use_ra: | |
self.attn_refview = Attention( | |
query_dim=self.dim, | |
heads=self.num_attention_heads, | |
dim_head=self.attention_head_dim, | |
dropout=self.dropout, | |
bias=self.attention_bias, | |
cross_attention_dim=None, | |
upcast_attention=self.attn1.upcast_attention, | |
out_bias=True, | |
) | |
def __getattr__(self, name: str): | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.transformer, name) | |
def forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None, | |
) -> torch.Tensor: | |
# Notice that normalization is always applied before the real computation in the following blocks. | |
# 0. Self-Attention | |
batch_size = hidden_states.shape[0] | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
num_in_batch = cross_attention_kwargs.pop('num_in_batch', 1) | |
mode = cross_attention_kwargs.pop('mode', None) | |
mva_scale = cross_attention_kwargs.pop('mva_scale', 1.0) | |
ref_scale = cross_attention_kwargs.pop('ref_scale', 1.0) | |
condition_embed_dict = cross_attention_kwargs.pop("condition_embed_dict", None) | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.norm_type == "ada_norm_zero": | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm1(hidden_states) | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
elif self.norm_type == "ada_norm_single": | |
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = ( | |
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1) | |
).chunk(6, dim=1) | |
norm_hidden_states = self.norm1(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa | |
else: | |
raise ValueError("Incorrect norm used") | |
if self.pos_embed is not None: | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
# 1. Prepare GLIGEN inputs | |
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {} | |
gligen_kwargs = cross_attention_kwargs.pop("gligen", None) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.norm_type == "ada_norm_zero": | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
elif self.norm_type == "ada_norm_single": | |
attn_output = gate_msa * attn_output | |
hidden_states = attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1.2 Reference Attention | |
if 'w' in mode: | |
condition_embed_dict[self.layer_name] = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', | |
n=num_in_batch) # B, (N L), C | |
if 'r' in mode and self.use_ra: | |
condition_embed = condition_embed_dict[self.layer_name].unsqueeze(1).repeat(1, num_in_batch, 1, | |
1) # B N L C | |
condition_embed = rearrange(condition_embed, 'b n l c -> (b n) l c') | |
attn_output = self.attn_refview( | |
norm_hidden_states, | |
encoder_hidden_states=condition_embed, | |
attention_mask=None, | |
**cross_attention_kwargs | |
) | |
ref_scale_timing = ref_scale | |
if isinstance(ref_scale, torch.Tensor): | |
ref_scale_timing = ref_scale.unsqueeze(1).repeat(1, num_in_batch).view(-1) | |
for _ in range(attn_output.ndim - 1): | |
ref_scale_timing = ref_scale_timing.unsqueeze(-1) | |
hidden_states = ref_scale_timing * attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1.3 Multiview Attention | |
if num_in_batch > 1 and self.use_ma: | |
multivew_hidden_states = rearrange(norm_hidden_states, '(b n) l c -> b (n l) c', n=num_in_batch) | |
attn_output = self.attn_multiview( | |
multivew_hidden_states, | |
encoder_hidden_states=multivew_hidden_states, | |
**cross_attention_kwargs | |
) | |
attn_output = rearrange(attn_output, 'b (n l) c -> (b n) l c', n=num_in_batch) | |
hidden_states = mva_scale * attn_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
# 1.2 GLIGEN Control | |
if gligen_kwargs is not None: | |
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"]) | |
# 3. Cross-Attention | |
if self.attn2 is not None: | |
if self.norm_type == "ada_norm": | |
norm_hidden_states = self.norm2(hidden_states, timestep) | |
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]: | |
norm_hidden_states = self.norm2(hidden_states) | |
elif self.norm_type == "ada_norm_single": | |
# For PixArt norm2 isn't applied here: | |
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103 | |
norm_hidden_states = hidden_states | |
elif self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
else: | |
raise ValueError("Incorrect norm") | |
if self.pos_embed is not None and self.norm_type != "ada_norm_single": | |
norm_hidden_states = self.pos_embed(norm_hidden_states) | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 4. Feed-forward | |
# i2vgen doesn't have this norm 🤷♂️ | |
if self.norm_type == "ada_norm_continuous": | |
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"]) | |
elif not self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
if self.norm_type == "ada_norm_single": | |
norm_hidden_states = self.norm2(hidden_states) | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp | |
if self._chunk_size is not None: | |
# "feed_forward_chunk_size" can be used to save memory | |
ff_output = _chunked_feed_forward(self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size) | |
else: | |
ff_output = self.ff(norm_hidden_states) | |
if self.norm_type == "ada_norm_zero": | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
elif self.norm_type == "ada_norm_single": | |
ff_output = gate_mlp * ff_output | |
hidden_states = ff_output + hidden_states | |
if hidden_states.ndim == 4: | |
hidden_states = hidden_states.squeeze(1) | |
return hidden_states | |
class UNet2p5DConditionModel(torch.nn.Module): | |
def __init__(self, unet: UNet2DConditionModel) -> None: | |
super().__init__() | |
self.unet = unet | |
self.use_ma = True | |
self.use_ra = True | |
self.use_camera_embedding = True | |
self.use_dual_stream = True | |
if self.use_dual_stream: | |
self.unet_dual = copy.deepcopy(unet) | |
self.init_attention(self.unet_dual) | |
self.init_attention(self.unet, use_ma=self.use_ma, use_ra=self.use_ra) | |
self.init_condition() | |
self.init_camera_embedding() | |
def from_pretrained(pretrained_model_name_or_path, **kwargs): | |
torch_dtype = kwargs.pop('torch_dtype', torch.float32) | |
config_path = os.path.join(pretrained_model_name_or_path, 'config.json') | |
unet_ckpt_path = os.path.join(pretrained_model_name_or_path, 'diffusion_pytorch_model.bin') | |
with open(config_path, 'r', encoding='utf-8') as file: | |
config = json.load(file) | |
unet = UNet2DConditionModel(**config) | |
unet = UNet2p5DConditionModel(unet) | |
unet_ckpt = torch.load(unet_ckpt_path, map_location='cpu', weights_only=True) | |
unet.load_state_dict(unet_ckpt, strict=True) | |
unet = unet.to(torch_dtype) | |
return unet | |
def init_condition(self): | |
self.unet.conv_in = torch.nn.Conv2d( | |
12, | |
self.unet.conv_in.out_channels, | |
kernel_size=self.unet.conv_in.kernel_size, | |
stride=self.unet.conv_in.stride, | |
padding=self.unet.conv_in.padding, | |
dilation=self.unet.conv_in.dilation, | |
groups=self.unet.conv_in.groups, | |
bias=self.unet.conv_in.bias is not None) | |
self.unet.learned_text_clip_gen = nn.Parameter(torch.randn(1, 77, 1024)) | |
self.unet.learned_text_clip_ref = nn.Parameter(torch.randn(1, 77, 1024)) | |
def init_camera_embedding(self): | |
if self.use_camera_embedding: | |
time_embed_dim = 1280 | |
self.max_num_ref_image = 5 | |
self.max_num_gen_image = 12 * 3 + 4 * 2 | |
self.unet.class_embedding = nn.Embedding(self.max_num_ref_image + self.max_num_gen_image, time_embed_dim) | |
def init_attention(self, unet, use_ma=False, use_ra=False): | |
for down_block_i, down_block in enumerate(unet.down_blocks): | |
if hasattr(down_block, "has_cross_attention") and down_block.has_cross_attention: | |
for attn_i, attn in enumerate(down_block.attentions): | |
for transformer_i, transformer in enumerate(attn.transformer_blocks): | |
if isinstance(transformer, BasicTransformerBlock): | |
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, | |
f'down_{down_block_i}_{attn_i}_{transformer_i}', | |
use_ma, use_ra) | |
if hasattr(unet.mid_block, "has_cross_attention") and unet.mid_block.has_cross_attention: | |
for attn_i, attn in enumerate(unet.mid_block.attentions): | |
for transformer_i, transformer in enumerate(attn.transformer_blocks): | |
if isinstance(transformer, BasicTransformerBlock): | |
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, | |
f'mid_{attn_i}_{transformer_i}', | |
use_ma, use_ra) | |
for up_block_i, up_block in enumerate(unet.up_blocks): | |
if hasattr(up_block, "has_cross_attention") and up_block.has_cross_attention: | |
for attn_i, attn in enumerate(up_block.attentions): | |
for transformer_i, transformer in enumerate(attn.transformer_blocks): | |
if isinstance(transformer, BasicTransformerBlock): | |
attn.transformer_blocks[transformer_i] = Basic2p5DTransformerBlock(transformer, | |
f'up_{up_block_i}_{attn_i}_{transformer_i}', | |
use_ma, use_ra) | |
def __getattr__(self, name: str): | |
try: | |
return super().__getattr__(name) | |
except AttributeError: | |
return getattr(self.unet, name) | |
def forward( | |
self, sample, timestep, encoder_hidden_states, | |
*args, down_intrablock_additional_residuals=None, | |
down_block_res_samples=None, mid_block_res_sample=None, | |
**cached_condition, | |
): | |
B, N_gen, _, H, W = sample.shape | |
assert H == W | |
if self.use_camera_embedding: | |
camera_info_gen = cached_condition['camera_info_gen'] + self.max_num_ref_image | |
camera_info_gen = rearrange(camera_info_gen, 'b n -> (b n)') | |
else: | |
camera_info_gen = None | |
sample = [sample] | |
if 'normal_imgs' in cached_condition: | |
sample.append(cached_condition["normal_imgs"]) | |
if 'position_imgs' in cached_condition: | |
sample.append(cached_condition["position_imgs"]) | |
sample = torch.cat(sample, dim=2) | |
sample = rearrange(sample, 'b n c h w -> (b n) c h w') | |
encoder_hidden_states_gen = encoder_hidden_states.unsqueeze(1).repeat(1, N_gen, 1, 1) | |
encoder_hidden_states_gen = rearrange(encoder_hidden_states_gen, 'b n l c -> (b n) l c') | |
if self.use_ra: | |
if 'condition_embed_dict' in cached_condition: | |
condition_embed_dict = cached_condition['condition_embed_dict'] | |
else: | |
condition_embed_dict = {} | |
ref_latents = cached_condition['ref_latents'] | |
N_ref = ref_latents.shape[1] | |
if self.use_camera_embedding: | |
camera_info_ref = cached_condition['camera_info_ref'] | |
camera_info_ref = rearrange(camera_info_ref, 'b n -> (b n)') | |
else: | |
camera_info_ref = None | |
ref_latents = rearrange(ref_latents, 'b n c h w -> (b n) c h w') | |
encoder_hidden_states_ref = self.unet.learned_text_clip_ref.unsqueeze(1).repeat(B, N_ref, 1, 1) | |
encoder_hidden_states_ref = rearrange(encoder_hidden_states_ref, 'b n l c -> (b n) l c') | |
noisy_ref_latents = ref_latents | |
timestep_ref = 0 | |
if self.use_dual_stream: | |
unet_ref = self.unet_dual | |
else: | |
unet_ref = self.unet | |
unet_ref( | |
noisy_ref_latents, timestep_ref, | |
encoder_hidden_states=encoder_hidden_states_ref, | |
class_labels=camera_info_ref, | |
# **kwargs | |
return_dict=False, | |
cross_attention_kwargs={ | |
'mode': 'w', 'num_in_batch': N_ref, | |
'condition_embed_dict': condition_embed_dict}, | |
) | |
cached_condition['condition_embed_dict'] = condition_embed_dict | |
else: | |
condition_embed_dict = None | |
mva_scale = cached_condition.get('mva_scale', 1.0) | |
ref_scale = cached_condition.get('ref_scale', 1.0) | |
return self.unet( | |
sample, timestep, | |
encoder_hidden_states_gen, *args, | |
class_labels=camera_info_gen, | |
down_intrablock_additional_residuals=[ | |
sample.to(dtype=self.unet.dtype) for sample in down_intrablock_additional_residuals | |
] if down_intrablock_additional_residuals is not None else None, | |
down_block_additional_residuals=[ | |
sample.to(dtype=self.unet.dtype) for sample in down_block_res_samples | |
] if down_block_res_samples is not None else None, | |
mid_block_additional_residual=( | |
mid_block_res_sample.to(dtype=self.unet.dtype) | |
if mid_block_res_sample is not None else None | |
), | |
return_dict=False, | |
cross_attention_kwargs={ | |
'mode': 'r', 'num_in_batch': N_gen, | |
'condition_embed_dict': condition_embed_dict, | |
'mva_scale': mva_scale, | |
'ref_scale': ref_scale, | |
}, | |
) | |