Spaces:
Running
Running
File size: 36,929 Bytes
968950a 95914a4 cfb2d7d ceb3143 0a07bb2 3fb7d68 968950a d92588e 968950a efd6469 3fb7d68 1464a2b 3635b6d 1464a2b 3635b6d 1464a2b 3635b6d 1464a2b 3fb7d68 d8383ff 6e1fd05 d8383ff efd6469 968950a d8383ff efd6469 d8383ff efd6469 968950a 95914a4 968950a efd6469 968950a efd6469 95914a4 968950a 1981ff3 968950a 1981ff3 968950a 23938f5 968950a 23938f5 968950a d1c51a5 968950a ff5944b 968950a f835b8c 968950a b1bee9c 968950a 6c545b4 968950a f835b8c 968950a b1bee9c 968950a 6c545b4 968950a f835b8c 968950a d92588e 968950a d92588e 968950a d92588e 968950a d92588e 968950a d92588e 968950a d92588e 968950a d92588e 968950a d92588e 968950a d92588e 968950a d92588e 968950a 909bc0b 968950a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 |
from shiny import App, Inputs, Outputs, Session, reactive, render, req, ui
import datasets
from datasets import load_dataset
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy.stats import gaussian_kde
import matplotlib
from matplotlib.ticker import MaxNLocator
from matplotlib.gridspec import GridSpec
from scipy.stats import zscore
import math
import matplotlib
from adjustText import adjust_text
import matplotlib.ticker as mtick
from shinywidgets import output_widget, render_widget
import pandas as pd
from configure import base_url
import shinyswatch
from datetime import datetime, timedelta
year_input = 2024
### Import Datasets
dataset = load_dataset('nesticot/mlb_data', data_files=['mlb_pitch_data_2024.csv' ])
dataset_train = dataset['train']
df_2023_mlb = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
# from api_scraper import MLB_Scrape
# mlb_stats = MLB_Scrape()
# schedule_spring = mlb_stats.get_schedule(year_input=2024,
# sport_id=1,
# start_date='2024-01-01',
# end_date='2024-12-31',
# final=False,
# regular=True,
# spring=False)
# schedule_spring = schedule_spring.drop_duplicates(subset=['game_id'])
# schedule_spring = schedule_spring[(schedule_spring['date']==(datetime.today() - timedelta(hours=8)).date())]
# data = mlb_stats.get_data(schedule_spring.game_id[:].values)
# df_2023_new = mlb_stats.get_data_df(data_list = data)
# df_2023 = pd.concat([df_2023_mlb,df_2023_new])
# df_2023 = df_2023.drop_duplicates(subset=['play_id'],keep='last')
# df_2023_mlb = pd.concat([df_2023_mlb,df_2023_new])
### Import Datasets
dataset = load_dataset('nesticot/mlb_data', data_files=['aaa_pitch_data_2024.csv' ])
dataset_train = dataset['train']
df_2023_aaa = dataset_train.to_pandas().set_index(list(dataset_train.features.keys())[0]).reset_index(drop=True)
df_2023_mlb['level'] = 'MLB'
df_2023_aaa['level'] = 'AAA'
df_2023 = pd.concat([df_2023_mlb,df_2023_aaa])
# df_2023 = pd.concat([df_2023_mlb])
#print(df_2023)
### Normalize Hit Locations
import joblib
swing_model = joblib.load('swing.joblib')
no_swing_model = joblib.load('no_swing.joblib')
# Now you can use the loaded model for prediction or any other task
batter_dict = df_2023.sort_values('batter_name').set_index('batter_id')['batter_name'].to_dict()
## Make Predictions
## Define Features and Target
features = ['px','pz','strikes','balls']
## Set up 2023 Data for Prediction of Run Expectancy
df_model_2023_no_swing = df_2023[df_2023.is_swing != 1].dropna(subset=features)
df_model_2023_swing = df_2023[df_2023.is_swing == 1].dropna(subset=features)
import xgboost as xgb
df_model_2023_no_swing['y_pred'] = no_swing_model.predict(xgb.DMatrix(df_model_2023_no_swing[features]))
df_model_2023_swing['y_pred'] = swing_model.predict(xgb.DMatrix(df_model_2023_swing[features]))
df_model_2023 = pd.concat([df_model_2023_no_swing,df_model_2023_swing])
import joblib
# # Dump the model to a file named 'model.joblib'
# model = joblib.load('xtb_model.joblib')
# ## Create a Dataset to calculate xRV/100 Pitches
# df_model_2023['pitcher_name'] = df_model_2023.pitcher.map(pitcher_dict)
# df_model_2023['player_team'] = df_model_2023.batter.map(team_player_dict)
df_model_2023_group = df_model_2023.groupby(['batter_id','batter_name','level']).agg(
pitches = ('start_speed','count'),
y_pred = ('y_pred','mean'),
)
## Minimum 500 pitches faced
#min_pitches = 300
#df_model_2023_group = df_model_2023_group[df_model_2023_group.pitches >= min_pitches]
## Calculate 20-80 Scale
df_model_2023_group['decision_value'] = zscore(df_model_2023_group['y_pred'])
df_model_2023_group['decision_value'] = (50+df_model_2023_group['decision_value']*10)
## Create a Dataset to calculate xRV/100 for Pitches Taken
df_model_2023_group_no_swing = df_model_2023[df_model_2023.is_swing!=1].groupby(['batter_id','batter_name','level']).agg(
pitches = ('start_speed','count'),
y_pred = ('y_pred','mean')
)
# Select Pitches with 500 total pitches
df_model_2023_group_no_swing = df_model_2023_group_no_swing[df_model_2023_group_no_swing.index.get_level_values(1).isin(df_model_2023_group.index.get_level_values(1))]
## Calculate 20-80 Scale
df_model_2023_group_no_swing['iz_awareness'] = zscore(df_model_2023_group_no_swing['y_pred'])
df_model_2023_group_no_swing['iz_awareness'] = (((50+df_model_2023_group_no_swing['iz_awareness']*10)))
## Create a Dataset for xRV/100 Pitches Swung At
df_model_2023_group_swing = df_model_2023[df_model_2023.is_swing==1].groupby(['batter_id','batter_name','level']).agg(
pitches = ('start_speed','count'),
y_pred = ('y_pred','mean')
)
# Select Pitches with 500 total pitches
df_model_2023_group_swing = df_model_2023_group_swing[df_model_2023_group_swing.index.get_level_values(1).isin(df_model_2023_group.index.get_level_values(1))]
## Calculate 20-80 Scale
df_model_2023_group_swing['oz_awareness'] = zscore(df_model_2023_group_swing['y_pred'])
df_model_2023_group_swing['oz_awareness'] = (((50+df_model_2023_group_swing['oz_awareness']*10)))
## Create df for plotting
# Merge Datasets
df_model_2023_group_swing_plus_no = df_model_2023_group_swing.merge(df_model_2023_group_no_swing,left_index=True,right_index=True,suffixes=['_swing','_no_swing'])
df_model_2023_group_swing_plus_no['pitches'] = df_model_2023_group_swing_plus_no.pitches_swing + df_model_2023_group_swing_plus_no.pitches_no_swing
# Calculate xRV/100 Pitches
df_model_2023_group_swing_plus_no['y_pred'] = (df_model_2023_group_swing_plus_no.y_pred_swing*df_model_2023_group_swing_plus_no.pitches_swing + \
df_model_2023_group_swing_plus_no.y_pred_no_swing*df_model_2023_group_swing_plus_no.pitches_no_swing) / \
df_model_2023_group_swing_plus_no.pitches
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.merge(right=df_model_2023_group,
left_index=True,
right_index=True,
suffixes=['','_y'])
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.reset_index()
team_dict = df_2023.groupby(['batter_name'])[['batter_id','batter_team']].tail().set_index('batter_id')['batter_team'].to_dict()
df_model_2023_group_swing_plus_no['team'] = df_model_2023_group_swing_plus_no['batter_id'].map(team_dict)
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no.set_index(['batter_id','batter_name','level','team'])
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no[df_model_2023_group_swing_plus_no['pitches']>=50]
df_model_2023_group_swing_plus_no_copy = df_model_2023_group_swing_plus_no.copy()
import matplotlib
colour_palette = ['#FFB000','#648FFF','#785EF0',
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],'#ffffff',colour_palette[0]])
cmap_hue2 = matplotlib.colors.LinearSegmentedColormap.from_list("",['#ffffff',colour_palette[0]])
from matplotlib.pyplot import text
import inflect
from scipy.stats import percentileofscore
p = inflect.engine()
def server(input,output,session):
@output
@render.plot(alt="hex_plot")
@reactive.event(input.go, ignore_none=False)
def scatter_plot():
if input.batter_id() is "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
return
print(df_model_2023_group_swing_plus_no_copy)
print(input.level_list())
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no_copy[df_model_2023_group_swing_plus_no_copy.index.get_level_values(2) == input.level_list()]
print('this one')
print(df_model_2023_group_swing_plus_no)
batter_select_id = int(input.batter_id())
# batter_select_name = 'Edouard Julien'
#max(1,int(input.pitch_min()))
plot_min = max(50,int(input.pitch_min()))
df_model_2023_group_swing_plus_no = df_model_2023_group_swing_plus_no[df_model_2023_group_swing_plus_no.pitches >= plot_min]
## Plot In-Zone vs Out-of-Zone Awareness
sns.set_theme(style="whitegrid", palette="pastel")
# fig, ax = plt.subplots(1,1,figsize=(12,12))
fig = plt.figure(figsize=(12,12))
gs = GridSpec(3, 3, height_ratios=[0.6,10,0.2], width_ratios=[0.25,0.50,0.25])
axheader = fig.add_subplot(gs[0, :])
#ax10 = fig.add_subplot(gs[1, 0])
ax = fig.add_subplot(gs[1, :]) # Subplot at the top-right position
#ax12 = fig.add_subplot(gs[1, 2])
axfooter1 = fig.add_subplot(gs[-1, 0])
axfooter2 = fig.add_subplot(gs[-1, 1])
axfooter3 = fig.add_subplot(gs[-1, 2])
cmap_hue = matplotlib.colors.LinearSegmentedColormap.from_list("", [colour_palette[1],colour_palette[3],colour_palette[0]])
norm = plt.Normalize(df_model_2023_group_swing_plus_no['y_pred'].min()*100, df_model_2023_group_swing_plus_no['y_pred'].max()*100)
sns.scatterplot(
x=df_model_2023_group_swing_plus_no['y_pred_swing']*100,
y=df_model_2023_group_swing_plus_no['y_pred_no_swing']*100,
hue=df_model_2023_group_swing_plus_no['y_pred']*100,
size=df_model_2023_group_swing_plus_no['pitches_swing']/df_model_2023_group_swing_plus_no['pitches'],
palette=cmap_hue,ax=ax)
sm = plt.cm.ScalarMappable(cmap=cmap_hue, norm=norm)
cbar = plt.colorbar(sm, cax=axfooter2, orientation='horizontal',shrink=1)
cbar.set_label('Decision Value xRV/100 Pitches',fontsize=12)
ax.axhline(y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].mean()*100,color='gray',linewidth=3,linestyle='dotted',alpha=0.4)
ax.axvline(x=df_model_2023_group_swing_plus_no['y_pred_swing'].mean()*100,color='gray',linewidth=3,linestyle='dotted',alpha=0.4)
x_lim_min = (math.floor((df_model_2023_group_swing_plus_no['y_pred_swing'].min()*100*100)/5))*5/100
x_lim_max = (math.ceil((df_model_2023_group_swing_plus_no['y_pred_swing'].max()*100*100)/5))*5/100
y_lim_min = (math.floor((df_model_2023_group_swing_plus_no['y_pred_no_swing'].min()*100*100)/5))*5/100
y_lim_max = (math.ceil((df_model_2023_group_swing_plus_no['y_pred_no_swing'].max()*100*100)/5))*5/100
ax.set_xlim(x_lim_min,x_lim_max)
ax.set_ylim(y_lim_min,y_lim_max)
ax.tick_params(axis='both', which='major', labelsize=12)
ax.set_xlabel('Out-of-Zone Awareness Value xRV/100 Swings',fontsize=16)
ax.set_ylabel('In-Zone Awareness Value xRV/100 Takes',fontsize=16)
ax.get_legend().remove()
ts=[]
# thresh = 0.5
# thresh_2 = -0.9
# for i in range(len(df_model_2023_group_swing_plus_no)):
# if (df_model_2023_group_swing_plus_no['y_pred'].values[i]*100) >= thresh or \
# (df_model_2023_group_swing_plus_no['y_pred'].values[i]*100) <= thresh_2 or \
# (str(df_model_2023_group_swing_plus_no.index.get_level_values(0).values[i]) in (input.name_list())) :
# ts.append(ax.text(x=df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]*100,
# y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]*100,
# s=df_model_2023_group_swing_plus_no.index.get_level_values(1).values[i],
# fontsize=8))
thresh = 0.5
thresh_2 = -0.9
for i in range(len(df_model_2023_group_swing_plus_no)):
if (df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred_swing'].quantile(0.98) or \
(df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred_swing'].quantile(0.02) or \
(df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred_no_swing'].quantile(0.98) or \
(df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred_no_swing'].quantile(0.02) or \
(df_model_2023_group_swing_plus_no['y_pred'].values[i]) >= df_model_2023_group_swing_plus_no['y_pred'].quantile(0.98) or \
(df_model_2023_group_swing_plus_no['y_pred'].values[i]) <= df_model_2023_group_swing_plus_no['y_pred'].quantile(0.02) or \
(str(df_model_2023_group_swing_plus_no.index.get_level_values(0).values[i]) in (input.name_list())) :
ts.append(ax.text(x=df_model_2023_group_swing_plus_no['y_pred_swing'].values[i]*100,
y=df_model_2023_group_swing_plus_no['y_pred_no_swing'].values[i]*100,
s=df_model_2023_group_swing_plus_no.index.get_level_values(1).values[i],
fontsize=8))
ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.02,s=f'Min. {plot_min} Pitches',fontsize='10',fontstyle='oblique',va='top',
bbox=dict(facecolor='white', edgecolor='black'))
# ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.06,s=f'Labels for Batters with\nDescion Value xRV/100 > {thresh:.2f}\nDescion Value xRV/100 < {thresh_2:.2f}',fontsize='10',fontstyle='oblique',va='top',
# bbox=dict(facecolor='white', edgecolor='black'))
ax.text(x=x_lim_min+abs(x_lim_min)*0.02,y=y_lim_max-abs(y_lim_max-y_lim_min)*0.06,s=f'Point Size Represents Swing%',fontsize='10',fontstyle='oblique',va='top',
bbox=dict(facecolor='white', edgecolor='black'))
adjust_text(ts,
arrowprops=dict(arrowstyle="-", color=colour_palette[4], lw=1),ax=ax)
axfooter1.axis('off')
axfooter3.axis('off')
axheader.axis('off')
axheader.text(s=f'{input.level_list()} In-Zone vs Out-of-Zone Awareness Value',fontsize=24,x=0.5,y=0,va='top',ha='center')
axfooter1.text(0.05, -0.5,"By: Thomas Nestico\n @TJStats",ha='left', va='bottom',fontsize=12)
axfooter3.text(0.95, -0.5, "Data: MLB",ha='right', va='bottom',fontsize=12)
fig.subplots_adjust(left=0.01, right=0.99, top=0.975, bottom=0.025)
@output
@render.plot(alt="hex_plot")
@reactive.event(input.go, ignore_none=False)
def dv_plot():
if input.batter_id() is "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
return
player_select = int(input.batter_id())
player_select_full = batter_dict[player_select]
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
df_will = df_will[df_will['level']==input.level_list()]
# df_will['y_pred'] = df_will['y_pred'] - df_will['y_pred'].mean()
win = max(1,int(input.rolling_window()))
sns.set_theme(style="whitegrid", palette="pastel")
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
from matplotlib.gridspec import GridSpec
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
fig = plt.figure(figsize=(12,12))
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
axheader = fig.add_subplot(gs[0, :])
ax10 = fig.add_subplot(gs[1, 0])
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
ax12 = fig.add_subplot(gs[1, 2])
axfooter1 = fig.add_subplot(gs[-1, :])
axheader.axis('off')
ax10.axis('off')
ax12.axis('off')
axfooter1.axis('off')
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
# ax.hlines(y=df_model_2023.y_pred.std()*100,xmin=win,xmax=len(df_will))
# sns.scatterplot( x= [976],
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred.mean()*100:.2f} xRV/100')
ax.legend()
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred.quantile(0.9)*100,
df_model_2023_group_swing_plus_no.y_pred.quantile(0.75)*100,
df_model_2023_group_swing_plus_no.y_pred.quantile(0.25)*100,
df_model_2023_group_swing_plus_no.y_pred.quantile(0.1)*100]
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
hard_hit_text = ['90th %','75th %','25th %','10th %']
for i, x in enumerate(hard_hit_dates):
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=1100)
# # Annotate with an arrow
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
ax.set_xlim(win,len(df_will))
#ax.set_ylim(-1.5,1.5)
ax.set_yticks([-1.5,-1,-0.5,0,0.5,1,1.5])
ax.set_xlabel('Pitch')
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
axheader.text(s=f'{player_select_full} - {win} Pitch Rolling Swing Decision Expected Run Value Added\n{input.level_list()} - {year_input}',x=0.5,y=-0.8,ha='center',va='bottom',fontsize=14)
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
#fig.set_facecolor(colour_palette[5])
@output
@render.plot(alt="hex_plot")
@reactive.event(input.go, ignore_none=False)
def iz_plot():
if input.batter_id() is "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
return
player_select = int(input.batter_id())
player_select_full = batter_dict[player_select]
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
df_will = df_will[df_will['level']==input.level_list()]
df_will = df_will[df_will['is_swing'] != 1]
win = max(1,int(input.rolling_window()))
sns.set_theme(style="whitegrid", palette="pastel")
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
from matplotlib.gridspec import GridSpec
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
fig = plt.figure(figsize=(12,12))
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
axheader = fig.add_subplot(gs[0, :])
ax10 = fig.add_subplot(gs[1, 0])
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
ax12 = fig.add_subplot(gs[1, 2])
axfooter1 = fig.add_subplot(gs[-1, :])
axheader.axis('off')
ax10.axis('off')
ax12.axis('off')
axfooter1.axis('off')
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred_no_swing,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
# ax.hlines(y=df_model_2023.y_pred_no_swing.std()*100,xmin=win,xmax=len(df_will))
# sns.scatterplot( x= [976],
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred_no_swing.mean()*100:.2} xRV/100')
ax.legend()
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.9)*100,
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.75)*100,
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.25)*100,
df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.1)*100]
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_no_swing.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
hard_hit_text = ['90th %','75th %','25th %','10th %']
for i, x in enumerate(hard_hit_dates):
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=111)
# # Annotate with an arrow
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
ax.set_xlim(win,len(df_will))
ax.set_yticks([1.0,1.5,2.0,2.5,3.0])
# ax.set_ylim(1,3)
ax.set_xlabel('Takes')
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
axheader.text(s=f'{player_select_full} - {win} Pitch Rolling In-Zone Awareness Expected Run Value Added\n{input.level_list()} - {year_input}',x=0.5,y=-0.8,ha='center',va='bottom',fontsize=14)
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
@output
@render.plot(alt="hex_plot")
@reactive.event(input.go, ignore_none=False)
def oz_plot():
if input.batter_id() is "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Batter',x=0.5,y=0.5)
return
player_select = int(input.batter_id())
player_select_full = batter_dict[player_select]
df_will = df_model_2023[df_model_2023.batter_id == player_select].sort_values(by=['game_date','start_time'])
df_will = df_will[df_will['level']==input.level_list()]
df_will = df_will[df_will['is_swing'] == 1]
win = max(1,int(input.rolling_window()))
sns.set_theme(style="whitegrid", palette="pastel")
#fig, ax = plt.subplots(1, 1, figsize=(10, 10),dpi=300)
from matplotlib.gridspec import GridSpec
# fig,ax = plt.subplots(figsize=(12, 12),dpi=150)
fig = plt.figure(figsize=(12,12))
gs = GridSpec(3, 3, height_ratios=[0.3,10,0.2], width_ratios=[0.01,2,0.01])
axheader = fig.add_subplot(gs[0, :])
ax10 = fig.add_subplot(gs[1, 0])
ax = fig.add_subplot(gs[1, 1]) # Subplot at the top-right position
ax12 = fig.add_subplot(gs[1, 2])
axfooter1 = fig.add_subplot(gs[-1, :])
axheader.axis('off')
ax10.axis('off')
ax12.axis('off')
axfooter1.axis('off')
sns.lineplot( x= range(win,len(df_will.y_pred.rolling(window=win).mean())+1),
y= df_will.y_pred.rolling(window=win).mean().dropna()*100,
color=colour_palette[0],linewidth=2,ax=ax,zorder=100)
ax.hlines(y=df_will.y_pred.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[0],linestyle='--',
label=f'{player_select_full} Average: {df_will.y_pred.mean()*100:.2} xRV/100 ({p.ordinal(int(np.around(percentileofscore(df_model_2023_group_swing_plus_no.y_pred_swing,df_will.y_pred.mean(), kind="strict"))))} Percentile)')
# ax.hlines(y=df_model_2023.y_pred_swing.std()*100,xmin=win,xmax=len(df_will))
# sns.scatterplot( x= [976],
# y= df_will.y_pred.rolling(window=win).mean().min()*100,
# color=colour_palette[0],linewidth=2,ax=ax,zorder=100,s=100,edgecolor=colour_palette[7])
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.mean()*100,xmin=win,xmax=len(df_will),color=colour_palette[1],linestyle='-.',alpha=1,
label = f'{input.level_list()} Average: {df_model_2023_group_swing_plus_no.y_pred_swing.mean()*100:.2} xRV/100')
ax.legend()
hard_hit_dates = [df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.9)*100,
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.75)*100,
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.25)*100,
df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.1)*100]
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.9)*100,xmin=win,xmax=len(df_will),color=colour_palette[2],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.75)*100,xmin=win,xmax=len(df_will),color=colour_palette[3],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.25)*100,xmin=win,xmax=len(df_will),color=colour_palette[4],linestyle='dotted',alpha=0.5,zorder=1)
ax.hlines(y=df_model_2023_group_swing_plus_no.y_pred_swing.quantile(0.1)*100,xmin=win,xmax=len(df_will),color=colour_palette[5],linestyle='dotted',alpha=0.5,zorder=1)
hard_hit_text = ['90th %','75th %','25th %','10th %']
for i, x in enumerate(hard_hit_dates):
ax.text(min(win+win/1000,win+win+5), x ,hard_hit_text[i], rotation=0,va='center', ha='left',
bbox=dict(facecolor='white',alpha=0.7, edgecolor=colour_palette[2+i], pad=2),zorder=111)
# # Annotate with an arrow
# ax.annotate('June 6, 2023\nSeason Worst Decision Value', xy=(976, df_will.y_pred.rolling(window=win).mean().min()*100-0.03),
# xytext=(976 - 150, df_will.y_pred.rolling(window=win).mean().min()*100 - 0.2),
# arrowprops=dict(facecolor=colour_palette[7], shrink=0.01),zorder=150,fontsize=10,
# bbox=dict(facecolor='white', edgecolor='black'),va='top')
ax.set_xlim(win,len(df_will))
#ax.set_ylim(-3.25,-1.25)
ax.set_yticks([-3.25,-2.75,-2.25,-1.75,-1.25])
ax.set_xlabel('Swing')
ax.set_ylabel('Expected Run Value Added per 100 Pitches (xRV/100)')
axheader.text(s=f'{player_select_full} - {win} Pitch Rolling Out of Zone Awareness Expected Run Value Added\n{input.level_list()} - {year_input}',x=0.5,y=-0.8,ha='center',va='bottom',fontsize=14)
axfooter1.text(.05, 0.2, "By: Thomas Nestico",ha='left', va='bottom',fontsize=12)
axfooter1.text(0.95, 0.2, "Data: MLB",ha='right', va='bottom',fontsize=12)
fig.subplots_adjust(left=0.01, right=0.99, top=0.98, bottom=0.02)
app = App(ui.page_fluid(
ui.tags.base(href=base_url),
ui.tags.div(
{"style": "width:90%;margin: 0 auto;max-width: 1600px;"},
ui.tags.style(
"""
h4 {
margin-top: 1em;font-size:35px;
}
h2{
font-size:25px;
}
"""
),
shinyswatch.theme.simplex(),
ui.tags.h4("TJStats"),
ui.tags.i("Baseball Analytics and Visualizations"),
# ui.markdown("""<a href='https://www.patreon.com/tj_stats'>Support me on Patreon for Access to 2024 Apps</a><sup>1</sup>"""),
# # ui.navset_tab(
# # ui.nav_control(
# # ui.a(
# # "Home",
# # href="home/"
# # ),
# # ),
# # ui.nav_menu(
# # "Batter Charts",
# # ui.nav_control(
# # ui.a(
# # "Batting Rolling",
# # href="rolling_batter/"
# # ),
# # ui.a(
# # "Spray & Damage",
# # href="https://nesticot-tjstats-site-spray.hf.space/"
# # ),
# # ui.a(
# # "Decision Value",
# # href="decision_value/"
# # ),
# # # ui.a(
# # # "Damage Model",
# # # href="damage_model/"
# # # ),
# # ui.a(
# # "Batter Scatter",
# # href="batter_scatter/"
# # ),
# # # ui.a(
# # # "EV vs LA Plot",
# # # href="ev_angle/"
# # # ),
# # ui.a(
# # "Statcast Compare",
# # href="statcast_compare/"
# # )
# # ),
# # ),
# # ui.nav_menu(
# # "Pitcher Charts",
# # ui.nav_control(
# # ui.a(
# # "Pitcher Rolling",
# # href="rolling_pitcher/"
# # ),
# # ui.a(
# # "Pitcher Summary",
# # href="pitching_summary_graphic_new/"
# # ),
# # ui.a(
# # "Pitcher Scatter",
# # href="pitcher_scatter/"
# # )
# # ),
# # )),
# ui.navset_tab(
# ui.nav_control(
# ui.a(
# "Home",
# href="home/"
# ),
# ),
# ui.nav_menu(
# "Batter Charts",
# ui.nav_control(
# ui.a(
# "Batting Rolling",
# href="https://nesticot-tjstats-site-rolling-batter.hf.space/"
# ),
# ui.a(
# "Spray",
# href="https://nesticot-tjstats-site-spray.hf.space/"
# ),
# ui.a(
# "Decision Value",
# href="https://nesticot-tjstats-site-decision-value.hf.space/"
# ),
# ui.a(
# "Damage Model",
# href="https://nesticot-tjstats-site-damage.hf.space/"
# ),
# ui.a(
# "Batter Scatter",
# href="https://nesticot-tjstats-site-batter-scatter.hf.space/"
# ),
# ui.a(
# "EV vs LA Plot",
# href="https://nesticot-tjstats-site-ev-angle.hf.space/"
# ),
# ui.a(
# "Statcast Compare",
# href="https://nesticot-tjstats-site-statcast-compare.hf.space/"
# ),
# ui.a(
# "MLB/MiLB Cards",
# href="https://nesticot-tjstats-site-mlb-cards.hf.space/"
# )
# ),
# ),
# ui.nav_menu(
# "Pitcher Charts",
# ui.nav_control(
# ui.a(
# "Pitcher Rolling",
# href="https://nesticot-tjstats-site-rolling-pitcher.hf.space/"
# ),
# ui.a(
# "Pitcher Summary",
# href="https://nesticot-tjstats-site-pitching-summary-graphic-new.hf.space/"
# ),
# ui.a(
# "Pitcher Scatter",
# href="https://nesticot-tjstats-site-pitcher-scatter.hf.space"
# )
# ),
# )),
ui.row(
ui.layout_sidebar(
ui.panel_sidebar(
ui.input_numeric("pitch_min",
"Select Pitch Minimum [min. 50] (Scatter)",
value=100,
min=50),
ui.input_select("name_list",
"Select Players to List (Scatter)",
batter_dict,
selectize=True,
multiple=True),
ui.input_select("batter_id",
"Select Batter (Rolling)",
batter_dict,
width=1,
size=1,
selectize=True),
ui.input_numeric("rolling_window",
"Select Rolling Window (Rolling)",
value=100,
min=1),
ui.input_select("level_list",
"Select Level",
['MLB','AAA'],
selected='MLB'),
ui.input_action_button("go", "Generate",class_="btn-primary"),
),
ui.panel_main(
ui.navset_tab(
ui.nav("Scatter Plot",
ui.output_plot('scatter_plot',
width='1000px',
height='1000px')),
ui.nav("Rolling DV",
ui.output_plot('dv_plot',
width='1000px',
height='1000px')),
ui.nav("Rolling In-Zone",
ui.output_plot('iz_plot',
width='1000px',
height='1000px')),
ui.nav("Rolling Out-of-Zone",
ui.output_plot('oz_plot',
width='1000px',
height='1000px'))
))
)),)),server) |