Spaces:
Running
Running
File size: 20,481 Bytes
0fb0e06 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
from scipy.stats import gaussian_kde
import matplotlib
from matplotlib.ticker import MaxNLocator
from matplotlib.gridspec import GridSpec
from scipy.stats import zscore
import math
import matplotlib
from adjustText import adjust_text
import matplotlib.ticker as mtick
import pandas as pd
from matplotlib.pyplot import text
import inflect
colour_palette = ['#FFB000','#648FFF','#785EF0',
'#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
plot_dict = {
'k':{'x_axis':'Plate Appearances','y_axis':'K%','title':'K%','x_value':'k','x_range':[0.0,0.1,0.2,0.3,0.4],'percent':True,'percentile_label':'k_percent','flip_p':True,'percentile':False,'avg_adjust':False},
'bb':{'x_axis':'Plate Appearances','y_axis':'BB%','title':'BB%','x_value':'bb','x_range':[0.0,0.1,0.2,0.3],'percent':True,'percentile_label':'bb_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'bb_minus_k':{'x_axis':'Plate Appearances','y_axis':'BB-K%','title':'BB-K%','x_value':'bb_minus_k','x_range':[-0.3,-0.2,-0.1,0,0.1,0.2],'percent':True,'percentile_label':'bb_minus_k_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'csw':{'x_axis':'Pitches','y_axis':'CSW%','title':'CSW%','x_value':'csw','x_range':[.2,.25,.3,.35,.4],'percent':True,'percentile_label':'csw_percent','flip_p':True,'percentile':False,'avg_adjust':False},
'woba':{'x_axis':'wOBA PA','y_axis':'wOBA','title':'wOBA','x_value':'woba','x_range':[.20,.30,.40,.50],'percent':False,'percentile_label':'woba_percent','flip_p':False,'percentile':False,'avg_adjust':True},
'launch_speed':{'x_axis':'Balls In Play','y_axis':'Exit Velocity','title':'Exit Velocity','x_value':'launch_speed','x_range':[85,90,95,100],'percent':False,'percentile_label':'launch_speed','flip_p':False,'percentile':False,'avg_adjust':False},
'launch_speed_90':{'x_axis':'Balls In Play','y_axis':'90th Percentile Exit Velocity','title':'90th Percentile Exit Velocity','x_value':'launch_speed','x_range':[95,100,105,110,115],'percent':False,'percentile_label':'launch_speed_90','flip_p':False,'percentile':True,'avg_adjust':False},
'hard_hit':{'x_axis':'Balls In Play','y_axis':'HardHit%','title':'HardHit%','x_value':'hard_hit','x_range':[0.2,0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'hard_hit_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'sweet_spot':{'x_axis':'Balls In Play','y_axis':'SweetSpot%','title':'SweetSpot%','x_value':'sweet_spot','x_range':[0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'sweet_spot_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'launch_angle':{'x_axis':'Balls In Play','y_axis':'Launch Angle','title':'Launch Angle','x_value':'launch_angle','x_range':[-20,-10,0,10,20],'percent':False,'percentile_label':'launch_angle','flip_p':False,'percentile':False,'avg_adjust':False},
'barrel':{'x_axis':'Balls In Play','y_axis':'Barrel%','title':'Barrel%','x_value':'barrel','x_range':[0,0.05,0.10,.15,.20],'percent':True,'percentile_label':'barrel_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'zone_percent':{'x_axis':'Pitches','y_axis':'Zone%','title':'Zone%','x_value':'in_zone','x_range':[0.3,0.4,0.5,0.6,0.7],'percent':True,'percentile_label':'zone_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'swing_percent':{'x_axis':'Pitches','y_axis':'Swing%','title':'Swing%','x_value':'swings','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'swing_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'whiff_percent':{'x_axis':'Swings','y_axis':'Whiff%','title':'Whiff%','x_value':'whiffs','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'whiff_rate','flip_p':True,'percentile':False,'avg_adjust':False},
'sw_str':{'x_axis':'Pitches','y_axis':'SwStr%','title':'SwStr%','x_value':'whiffs','x_range':[0.0,0.05,0.1,0.15,0.2,0.25],'percent':True,'percentile_label':'swstr_rate','flip_p':True,'percentile':False,'avg_adjust':False},
'zone_swing':{'x_axis':'In-Zone Pitches','y_axis':'Z-Swing%','title':'Z-Swing%','x_value':'zone_swing','x_range':[0.3,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_swing_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'zone_contact':{'x_axis':'In-Zone Swings','y_axis':'Z-Contact%','title':'Z-Contact%','x_value':'zone_contact','x_range':[0.5,0.6,0.7,0.8,0.9,1],'percent':True,'percentile_label':'zone_contact_percent','flip_p':False,'percentile':False,'avg_adjust':False},
'chase_percent':{'x_axis':'Out-of-Zone Pitches','y_axis':'O-Swing%','title':'O-Swing%','x_value':'ozone_swing','x_range':[0.0,0.1,0.2,0.3,0.4,0.5],'percent':True,'percentile_label':'chase_percent','flip_p':True,'percentile':False,'avg_adjust':False},
'chase_contact':{'x_axis':'Out-of-Zone Swings','y_axis':'O-Contact%','title':'O-Contact%','x_value':'ozone_contact','x_range':[0.2,0.3,0.4,0.5,0.6,0.7,0.8],'percent':True,'percentile_label':'chase_contact','flip_p':False,'percentile':False,'avg_adjust':False},}
level_dict = {'MLB':'MLB','AAA':'AAA','AA':'AA','A+':'A+','A':'A'}
woba_list = ['woba']
pa_list = ['k','bb','bb_minus_k']
balls_in_play_list = ['hard_hit','launch_speed','launch_speed_90','launch_angle','barrel','sweet_spot']
pitches_list = ['zone_percent','swing_percent','sw_str','csw']
swings_list = ['whiff_percent']
in_zone_pitches_list = ['zone_swing']
in_zone_swings_list = ['zone_contact']
out_zone_pitches_list = ['chase_percent']
out_zone_swings_list = ['chase_contact']
plot_dict_small = {
'k':'K%',
'bb':'BB%',
'bb_minus_k':'BB-K%',
'csw':'CSW%',
'woba':'wOBA',
'launch_speed':'Exit Velocity',
'launch_speed_90':'90th Percentile Exit Velocity',
'hard_hit':'HardHit%',
'sweet_spot':'SweetSpot%',
'launch_angle':'Launch Angle',
'zone_percent':'Zone%',
'barrel':'Barrel%',
'swing_percent':'Swing%',
'whiff_percent':'Whiff%',
'sw_str':'SwStr%',
'zone_swing':'Z-Swing%',
'zone_contact':'Z-Contact%',
'chase_percent':'O-Swing%',
'chase_contact':'O-Contact%',}
def rolling_plot(df,df_summ,player_id,stat_id,batter_dict,window_select,level_id):
season_title = df['game_date'].str[0:4].values[0]
sns.set_theme(style="whitegrid", palette="pastel")
if player_id == "":
fig = plt.figure(figsize=(12, 12))
fig.text(s='Please Select a Pitcher',x=0.5,y=0.5)
return
swing_min = int(window_select)
fig, ax = plt.subplots(1, 1, figsize=(10, 10))
fig.set_facecolor('white')
#ax.set_facecolor('white')
#fig.patch.set_facecolor('lightblue')
print(stat_id)
if stat_id in pa_list:
print('we hAVE MADE IT TO THIS PART OF THE CODE')
if stat_id in pa_list:
elly_zone_df = df[(df.pa==1)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'pa'
print('this is short')
print(elly_zone_df)
if stat_id in balls_in_play_list:
elly_zone_df = df[(df.bip)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'bip'
#print('this is short')
if stat_id in balls_in_play_list:
elly_zone_df = df[(df.bip)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'bip'
print('this is short')
if stat_id in pitches_list:
elly_zone_df = df[(df.pitches == 1)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'pitches'
if stat_id in swings_list:
elly_zone_df = df[(df.swings == 1)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'swings'
if stat_id in in_zone_pitches_list:
elly_zone_df = df[(df.in_zone)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'in_zone'
if stat_id in in_zone_swings_list:
elly_zone_df = df[(df.zone_swing)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'zone_swing'
if stat_id in out_zone_pitches_list:
elly_zone_df = df[(df.in_zone == False)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'out_zone'
if stat_id in out_zone_swings_list:
elly_zone_df = df[(df.ozone_swing)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'ozone_swing'
if stat_id in woba_list:
elly_zone_df = df[(df.woba_codes==1)&(df.batter_id == int(player_id))&(df.level==level_id)]
divisor_x = 'woba_codes'
# penguins = sns.load_dataset("penguins")
# sns.histplot(data=penguins, x="flipper_length_mm")
# print('we made it here:')
# print(int(player_id))
# print(stat_id)
# print(level_id)
# print(df[(df.batter_id == int(player_id))&(df.level==level_id)])
# print(df.columns)
# print(elly_zone_df[plot_dict[stat_id]["x_value"]].sum())
df_summ_new = df_summ.copy()
df_summ_new = df_summ_new.set_index('batter_id','batter_name','level')
df_summ_new = df_summ_new[df_summ_new[divisor_x] >= int(window_select)]
df_summ_new = df_summ_new[df_summ_new.level==level_id]
df_summ_rank = df_summ_new.rank(method='max',ascending=False)
df_summ_rank.columns = df_summ_rank.columns+['_rank']
df_summ_rank_percent = df_summ_new.rank(pct=True)
df_summ_rank_percent.columns = df_summ_rank_percent.columns+['_percent']
df_summ_new = df_summ_new.reset_index()
df_summ_rank = df_summ_rank.reset_index()
df_summ_rank_percent = df_summ_rank_percent.reset_index()
print('Table columns:')
df_summ_new.batter_id = df_summ_new.batter_id.astype(int)
df_summ_rank.batter_id = df_summ_rank.batter_id.astype(int)
df_summ_rank_percent.batter_id = df_summ_rank_percent.batter_id.astype(int)
print('Table columns2:')
df_summ_new = df_summ_new.merge(df_summ_rank,left_on=['batter_id'],right_on=['batter_id'],how='left',suffixes=['','_rank'])
df_summ_new = df_summ_new.merge(df_summ_rank_percent,left_on=['batter_id'],right_on=['batter_id'],how='left',suffixes=['','_percent'])
print(df_summ_new)
print(df_summ_rank)
print(df_summ_rank_percent)
#sns.scatterplot(x=data_df.launch_speed_90,y=data_df.zone_contact,color=colour_palette[0],s=75,label=int(player_id))
df_summ_new_select = df_summ_new[df_summ_new.batter_id == int(player_id)].reset_index(drop=True)
print('whiffing')
print(df)
print('Player _df:')
print(df_summ_new_select)
if len(df_summ_new_select) < 1:
ax.text(x=0.5,y=0.5,s='Please Select Different Parameters to Produce a plot',fontsize=18,ha='center')
return
p = inflect.engine()
df_summ_new_select = df_summ_new_select.loc[:,~df_summ_new_select.columns.duplicated(keep='last')].copy()
print('Table for the player:')
print(list(df_summ_new_select.columns))
print(plot_dict[stat_id]["percentile_label"])
print(plot_dict[stat_id]["percentile_label"]+'_percent')
print(df_summ_new_select)
print(1*plot_dict[stat_id]["flip_p"])
print(round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))
print((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)
# print(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+'_percent'])
if plot_dict[stat_id]['percent']:
label_1=f'{level_id} Average {df[df.level == level_id][plot_dict[stat_id]["x_value"]].sum()/df[df.level == level_id][divisor_x].sum():.1%}'
label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%} ({p.ordinal(abs(int((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)'
#label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}'
ax.yaxis.set_major_formatter(mtick.PercentFormatter(1))
else:
label_1=f'{level_id} Average {df[df.level == level_id][plot_dict[stat_id]["x_value"]].sum()/df[df.level == level_id][divisor_x].sum():.1f}'
label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1f} ({p.ordinal(abs(int((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)'
#label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1f}'
#ax.yaxis.set_major_formatter(mtick.int)
if plot_dict[stat_id]['percentile']:
label_1=f'{level_id} Average {df[df.level == level_id][plot_dict[stat_id]["x_value"]].quantile(0.9):.1f}'
label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].quantile(0.9):.1f} ({p.ordinal(abs(int((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)'
#label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}'
#ax.yaxis.set_major_formatter(mtick.int)
if plot_dict[stat_id]['avg_adjust']:
label_1=f'{level_id} Average {df[df.level == level_id][plot_dict[stat_id]["x_value"]].sum()/df[df.level == level_id][divisor_x].sum():.3f}'
label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.3f} ({p.ordinal(abs(int((1*plot_dict[stat_id]["flip_p"]-round(df_summ_new_select[plot_dict[stat_id]["percentile_label"]+"_percent"][0],2))*100)))} Percentile)'
#label_2=f'{batter_dict[int(player_id)]} Average {elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum():.1%}'
#ax.yaxis.set_major_formatter(mtick.int)
print(plot_dict[stat_id]["x_value"])
print(divisor_x)
# df_summ_new = df_summ.copy()
# df_summ_new = df_summ_new[df_summ_new.balls_in_play >= int(window_select)]
# df_summ_new = df_summ_new[df_summ_new.level==level_id]
print('this is here:')
print(df_summ_new.head())
print(df_summ_new.columns)
if plot_dict[stat_id]["flip_p"] == False:
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[2],linestyle='dotted',alpha=0.5)
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.75),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[3],linestyle='dotted',alpha=0.5)
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.25),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[4],linestyle='dotted',alpha=0.5)
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.1),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[5],linestyle='dotted',alpha=0.5)
hard_hit_dates = [(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.9),
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.75),
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.25),
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.1)]
hard_hit_text = ['90th %','75th %','25th %','10th %']
for i, x in enumerate(hard_hit_dates):
text(min(window_select+window_select/100,+window_select+1), x ,hard_hit_text[i], rotation=0, ha='left',
bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[2+i], pad=2))
if plot_dict[stat_id]["flip_p"] == True:
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.1),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[2],linestyle='dotted',alpha=0.5)
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.25),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[3],linestyle='dotted',alpha=0.5)
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.75),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[4],linestyle='dotted',alpha=0.5)
ax.hlines(y=(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[5],linestyle='dotted',alpha=0.5)
hard_hit_dates = [(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.9),
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.75),
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.25),
(df_summ_new[plot_dict[stat_id]["percentile_label"]]).quantile(0.1)]
hard_hit_text = ['10th %','25th %','75th %','90th %']
for i, x in enumerate(hard_hit_dates):
text(min(window_select+window_select/100,window_select+window_select+3), x ,hard_hit_text[i], rotation=0, ha='left',
bbox=dict(facecolor='white',alpha=0.5, edgecolor=colour_palette[2+i], pad=2))
if plot_dict[stat_id]["percentile"] == False:
ax.hlines(y=df[df.level == level_id][plot_dict[stat_id]["x_value"]].sum()/df[df.level == level_id][divisor_x].sum(),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[1],linestyle='-.',label=label_1)
ax.hlines(y=elly_zone_df[plot_dict[stat_id]["x_value"]].sum()/elly_zone_df[divisor_x].sum(),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[0],linestyle='--',label=label_2)
sns.lineplot(x=range(1,len(elly_zone_df)+1),y=elly_zone_df[plot_dict[stat_id]["x_value"]].fillna(0).rolling(window=swing_min).sum()/swing_min,color=colour_palette[0],linewidth=3,ax=ax)
if plot_dict[stat_id]["percentile"] == True:
ax.hlines(y=df[df.level == level_id][plot_dict[stat_id]["x_value"]].quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[1],linestyle='-.',label=label_1)
ax.hlines(y=elly_zone_df[plot_dict[stat_id]["x_value"]].fillna(0).quantile(0.9),xmin=swing_min,xmax=len(elly_zone_df),color=colour_palette[0],linestyle='--',label=label_2)
sns.lineplot(x=range(1,len(elly_zone_df)+1),y=elly_zone_df[plot_dict[stat_id]["x_value"]].fillna(0).rolling(window=swing_min).quantile(0.9),color=colour_palette[0],linewidth=3,ax=ax)
#ax.set_xlim(window_select,exit_velo_df_small.pitch.max())
#plt.yticks([0,0.2,0.4,0.6,0.8,1])
#ax.set_ylim(math.floor((min(df_summ.zone_contact)/5)*100)*5/100,1)
ax.set_xlim(math.floor(swing_min),len(elly_zone_df))
ax.set_title(f'{batter_dict[int(player_id)]} - {season_title} - {level_id} - {swing_min} {plot_dict[stat_id]["x_axis"]} Rolling {plot_dict[stat_id]["title"]}', fontsize=16,fontname='Century Gothic',)
#vals = ax.get_yticks()
ax.set_xlabel(plot_dict[stat_id]['x_axis'], fontsize=16,fontname='Century Gothic')
ax.set_ylabel(plot_dict[stat_id]['y_axis'], fontsize=16,fontname='Century Gothic')
#fig.axes[0].invert_yaxis()
#fig.subplots_adjust(wspace=.02, hspace=.02)
#ax.xaxis.set_major_formatter(FuncFormatter(lambda x, _: int(x)))
ax.set_yticks(plot_dict[stat_id]["x_range"])
#fig.colorbar(plot_dist, ax=ax)
#fig.colorbar(plot_dist)
#fig.axes[0].invert_yaxis()
ax.legend(fontsize='16')
fig.text(x=0.03,y=0.02,s='By: @TJStats',fontname='Century Gothic')
fig.text(x=1-0.03,y=0.02,s='Data: MLB',ha='right',fontname='Century Gothic')
fig.tight_layout()
return |