Spaces:
Running
Running
File size: 19,801 Bytes
9a59ac4 eaab5cb e0df468 eaab5cb 9a59ac4 eaab5cb 9a59ac4 c3ad087 eaab5cb 9a59ac4 eaab5cb 9a59ac4 eaab5cb a711b32 1faf464 9a59ac4 1faf464 9a59ac4 eaab5cb 1faf464 9a59ac4 1faf464 9a59ac4 1faf464 ae30f51 9a59ac4 1faf464 9a59ac4 eaab5cb 611e6cc b124522 611e6cc b124522 9a59ac4 eaab5cb 9a59ac4 eaab5cb 9a59ac4 2f2d88c 9a59ac4 eaab5cb 9a59ac4 2f2d88c 9a59ac4 eaab5cb 8830a95 9a59ac4 3f2f598 073a4a7 9a59ac4 3cbecca 9a59ac4 7dfd7fc 9a59ac4 d1f3cb7 4e75bf0 d1f3cb7 9a59ac4 3f2f598 9a59ac4 3f2f598 9a59ac4 eaab5cb 9a59ac4 3f2f598 9a59ac4 3f2f598 9a59ac4 eaab5cb 9a59ac4 1880996 9a59ac4 9f33b01 db59c68 9a59ac4 eaab5cb 0aa580e eaab5cb 0aa580e 9a59ac4 eaab5cb 9a59ac4 eaab5cb 9a59ac4 eaab5cb 9a59ac4 eaab5cb 3f938af 9a59ac4 eaab5cb 9a59ac4 eaab5cb 9a59ac4 eaab5cb 9a59ac4 eaab5cb 9a59ac4 eaab5cb 9a59ac4 eaab5cb 9a59ac4 d1f3cb7 9a59ac4 eaab5cb d1f3cb7 9a59ac4 eaab5cb d1f3cb7 9a59ac4 eaab5cb d1f3cb7 9a59ac4 d1f3cb7 9a59ac4 eaab5cb d1f3cb7 9a59ac4 eaab5cb 9a59ac4 eaab5cb f154443 bd36e6d f154443 6de20f1 f154443 9a59ac4 eaab5cb ae30f51 9a59ac4 24f10d8 9a59ac4 eaab5cb f154443 3ae80cc f154443 9a59ac4 eaab5cb 9a59ac4 eaab5cb 4fc67c7 9a59ac4 eaab5cb 1ed759c 68a734b 1ed759c 975fccf 1ed759c 9a59ac4 ae30f51 9a59ac4 ae30f51 f55d476 eaab5cb 24f10d8 6fa3751 eaab5cb 510d471 6fa3751 24f10d8 d1f3cb7 24f10d8 c97e7d6 9a59ac4 eaab5cb 9a59ac4 eaab5cb 073a4a7 d1f3cb7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 |
print('Running')
import time
import requests
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from matplotlib.pyplot import figure
from matplotlib.offsetbox import OffsetImage, AnnotationBbox
from scipy import stats
import matplotlib.lines as mlines
import matplotlib.transforms as mtransforms
import numpy as np
import time
#import plotly.express as px
#!pip install chart_studio
#import chart_studio.tools as tls
from bs4 import BeautifulSoup
import matplotlib.pyplot as plt
import numpy as np
import matplotlib.font_manager as font_manager
from datetime import datetime
import pytz
from matplotlib.ticker import MaxNLocator
from matplotlib.patches import Ellipse
import matplotlib.transforms as transforms
from matplotlib.gridspec import GridSpec
datetime.now(pytz.timezone('US/Pacific')).strftime('%B %d, %Y')
# Configure Notebook
#%matplotlib inline
plt.style.use('fivethirtyeight')
sns.set_context("notebook")
import warnings
warnings.filterwarnings('ignore')
# import yfpy
# from yfpy.query import YahooFantasySportsQuery
# import yahoo_oauth
import json
#import openpyxl
# from sklearn import preprocessing
from datetime import timedelta
# import dataframe_image as dfi
# from google.colab import drive
def percentile(n):
def percentile_(x):
return np.percentile(x, n)
percentile_.__name__ = 'percentile_%s' % n
return percentile_
# import os
# import praw
# import matplotlib.pyplot as plt
# import matplotlib.colors
# import matplotlib.colors as mcolors
# cmap_sum = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#4285f4","#FFFFFF","#F0E442"])
#import pybaseball
import math
# import matplotlib.ticker as mtick
# import matplotlib.ticker as ticker
# colour_palette = ['#FFB000','#648FFF','#785EF0',
# '#DC267F','#FE6100','#3D1EB2','#894D80','#16AA02','#B5592B','#A3C1ED']
# import matplotlib.colors as mcolors
# from matplotlib.ticker import FuncFormatter
# from matplotlib.font_manager import FontProperties
import numpy as np
# import matplotlib.pyplot as plt
import matplotlib.colors
# import undetected_chromedriver as uc
# from selenium import webdriver
# from seleniumbase import Driver
# driver = Driver(uc=True)
# driver.get('https://www.naturalstattrick.com')
#x,y,c = zip(*np.random.rand(30,3)*4-2)
#norm=plt.Normalize(-2,2)
co = matplotlib.colors.LinearSegmentedColormap.from_list("", ["#ffffff","#F0E442"])
try:
data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=3000;sort=average_pick;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
key_check = data_r['fantasy_content']['league']['players']
except KeyError:
data_r = requests.get("https://pub-api-ro.fantasysports.yahoo.com/fantasy/v2/league/427.l.public;out=settings/players;position=ALL;start=0;count=1151;sort=average_pick;search=;out=percent_owned;out=auction_values,ranks;ranks=season;ranks_by_position=season;out=expert_ranks;expert_ranks.rank_type=projected_season_remaining/draft_analysis;cut_types=diamond;slices=last7days?format=json_f").json()
print('key_checked')
total_list = []
for x in data_r['fantasy_content']['league']['players']:
single_list = []
single_list.append(int(x['player']['player_id']))
single_list.append(int(x['player']['player_ranks'][0]['player_rank']['rank_value']))
single_list.append(x['player']['name']['full'])
single_list.append(x['player']['name']['first'])
single_list.append(x['player']['name']['last'])
single_list.append(x['player']['draft_analysis']['average_pick'])
single_list.append(x['player']['average_auction_cost'])
single_list.append(x['player']['display_position'])
single_list.append(x['player']['editorial_team_abbr'])
if 'value' in x['player']['percent_owned']:
single_list.append(x['player']['percent_owned']['value']/100)
else:
single_list.append(0)
total_list.append(single_list)
yahoo_df = pd.DataFrame(total_list,columns = ['player_id','rank_value','full','first','last','average_pick','average_auction_cost','display_position','editorial_team_abbr','percent_owned'])
yahoo_df_2 = yahoo_df.copy()
# # Write your code here.
# response = requests.get("https://www.naturalstattrick.com/playerlist.php?fromseason=20232024&thruseason=20232024&stype=2&sit=all&stdoi=oi&rate=n")
# soup = BeautifulSoup(response.text, 'html.parser')
# table_rows = soup.findAll('tr')
# table_rows = table_rows[1:-1]
# table_rows[0].findAll('td')
# player_name = []
# player_position = []
# player_team = []
# player_id = []
# for i in range(0,len(table_rows)-1):
# player_name.append(str(table_rows[i].findAll('td')[0].contents[0]))
# player_position.append(table_rows[i].findAll('td')[1].contents[0])
# player_team.append(table_rows[i].findAll('td')[2].contents[0])
# player_id.append(str(table_rows[i].findAll('td')[3].contents[0])[-76:][:7])
# player_id_df = pd.DataFrame({'Player':player_name,'Player ID':player_id,'Position':player_position,'Team':player_team})
# #player_id_df.index.name = 'Player Name'
# player_id_df.head()
# skater_df = player_id_df[player_id_df['Position'] != 'G']
# goalie_df = player_id_df[player_id_df['Position'] == 'G']
season = 20232024
seasontype = 2
def nat_stat_trick_range_pp_gp(rookie='n',start_date='2022-10-01',end_date=str(pd.to_datetime(datetime.now(pytz.timezone('US/Pacific')).strftime('%Y-%m-%d')).date()),sit='all',gp=1):
time.sleep(2)
url = f'https://www.naturalstattrick.com/playerteams.php?fromseason={season}&thruseason={season}&stype={seasontype}&sit=pp&score=all&stdoi=std&rate=y&team=ALL&pos=S&loc=B&toi=0&gpfilt=gpteam&fd=&td=&tgp='+str(gp)+'&lines=single&draftteam=ALL'
player_list_all = []
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
table_rows = soup.findAll('tr')
table_rows = table_rows[1:]
for j in range(0,len(table_rows)):
p_string = [str(x).strip('<td>').strip('</') for x in list(table_rows[j].findAll('td')) if "<td>" in str(x)]
player_list_all.append([p_string[0]]+[str(table_rows[j].findAll('td')[1]).split('>')[2].split('<')[0]]+p_string[1:]+[str(table_rows[j].findAll('td')[1])[98:105].strip('</a></td>')])
#table_rows[0].findAll('td')
if soup != "":
columns_list = [str(x).split('>')[1].split('<')[0] for x in soup.findAll('th')]+['player_id']
df_url = pd.DataFrame(data=player_list_all,columns=columns_list)
df_url = df_url.fillna(0)
df_url['Shots+Hits+Blocks/60'] = df_url['Shots/60'].astype(float)+df_url['Hits/60'].astype(float)+df_url['Shots Blocked/60'].astype(float)
df_url['Shots+Hits/60'] = df_url['Shots/60'].astype(float)+df_url['Hits/60'].astype(float)
#print(url)
return df_url
team_abv = pd.read_csv('team_abv.csv')
team_dict = team_abv.set_index('team_abv').to_dict()['team_name']
yahoo_nhl_df = pd.read_csv('yahoo_to_nhl.csv', encoding='unicode_escape')
player_games_df = pd.read_csv('player_games_cards.csv',index_col=[0])
team_games_df = pd.read_csv('team_games.csv',index_col=[0])
team_games_df['game_count'] = team_games_df.groupby('team')['team'].cumcount()+1
team_games_df['max_games'] = team_games_df.groupby('team').game_count.transform('max')
team_games_df['abv'] = team_games_df.team.map(team_abv.set_index('team_name')['team_abv'].to_dict())
team_games_df = team_games_df.sort_values(by='game_count',ascending=False)
#team_abv = pd.read_csv('team_abv.csv')
def nat_stat_convert(df):
for i in range(0,len(df.columns)):
if df.columns[i][-3:]=='/60':
if 'ix' not in df.columns[i]:
df[df.columns[i]] = np.round(df[df.columns[i]].astype(float)*df['TOI'].astype(float)/60,0)
df = df.rename(columns={df.columns[i]: df.columns[i].replace('/60','')})
else:
df[df.columns[i]] = df[df.columns[i]].astype(float)*df['TOI'].astype(float)/60
df = df.rename(columns={df.columns[i]: df.columns[i].replace('/60','')})
df['Faceoffs %'] = df['Faceoffs Won']/(df['Faceoffs Won']+df['Faceoffs Lost'])
return df
from shiny import ui, render, App
import matplotlib.image as mpimg
app_ui = ui.page_fluid(
#ui.panel_title("Simulate a normal distribution"),
ui.layout_sidebar(
ui.panel_sidebar(
#ui.input_date_range("date_range_id", "Date range input",start = statcast_df.game_date.min(), end = statcast_df.game_date.max()),
ui.input_select("team_id", "Select Team",team_dict,width=1,size=1,selected='ANA',),
ui.input_numeric("n_1", "Last Games x", value=1),
ui.input_numeric("n_2", "Last Games y", value=0),
ui.input_numeric("n_3", "Last Games z", value=0),
ui.input_numeric("top_n", "Show top 'n'", value=10),
ui.input_switch("x", "Drop N/A"),
#ui.input_select("ignore_id", "Remove Columns",['Position','Roster%'],multiple=True,selectize=True),
),
ui.panel_main(ui.tags.h3(""),
ui.div({"style": "font-size:2.7em;"},ui.output_text("txt_title")),
#ui.tags.h2("Fantasy Hockey Schedule Summary"),
ui.tags.h5("Created By: @TJStats, Data: Natural Stat Trick, Yahoo Fantasy"),
ui.div({"style": "font-size:1.6em;"},ui.output_text("txt")),
ui.output_table("pp_roundup"),
#ui.tags.h5('Legend'),
#ui.tags.h6('An Off Night is defined as a day in which less than half the teams in the NHL are playing'),
#ui.tags.h6('The scores are determined by using games played, off-nights, B2B, and strength of opponents') )
)
),
)
from urllib.request import Request, urlopen
from shiny import App, reactive, ui
from shiny.ui import h2, tags
# importing OpenCV(cv2) module
#print(app_ui)
def server(input, output, session):
@output
@render.text
def txt():
return f'{team_dict[input.team_id()]} Last Games PP Summary'
@output
@render.text
def txt_title():
return f'Team Last Games PP% Leaders'
@output
@render.table
def pp_roundup():
top_n = input.top_n()
n_1 = input.n_1()
n_2 = input.n_2()
n_3 = input.n_3()
list_of_columns = ['Player', 'Team', 'display_position','percent_owned','L'+str(n_1)+' PP TOI','L'+str(n_2)+' PP TOI','L'+str(n_3)+' PP TOI',
'L'+str(n_1)+' PP%','L'+str(n_2)+' PP%','L'+str(n_3)+' PP%']
list_of_columns_name = ['Player', 'Team', 'Position','Roster%','L'+str(n_1)+' PP TOI','L'+str(n_2)+' PP TOI','L'+str(n_3)+' PP TOI',
'L'+str(n_1)+' PP%','L'+str(n_2)+' PP%','L'+str(n_3)+' PP%']
if type(n_1) is not int:
n_1 = 1
if (n_2 == 0) or (n_2 == n_1) or (n_2 == None):
list_of_columns.remove(f'L{str(n_2)} PP TOI')
list_of_columns.remove(f'L{str(n_2)} PP%')
list_of_columns_name.remove(f'L{str(n_2)} PP TOI')
list_of_columns_name.remove(f'L{str(n_2)} PP%')
if (n_3 == 0) or (n_3 == n_1) or (n_3 == n_2) or (n_3 == None):
list_of_columns.remove(f'L{str(n_3)} PP TOI')
list_of_columns.remove(f'L{str(n_3)} PP%')
list_of_columns_name.remove(f'L{str(n_3)} PP TOI')
list_of_columns_name.remove(f'L{str(n_3)} PP%')
start_date ='2023-09-01'
end_date = '2024-05-01'
df_pp_1 = player_games_df.groupby('Player').head(n_1)
df_pp_2 = player_games_df.groupby('Player').head(n_2)
df_pp_3 = player_games_df.groupby('Player').head(n_3)
team_games_df_1 = team_games_df.groupby('team').head(n_1)
team_games_df_2 = team_games_df.groupby('team').head(n_2)
team_games_df_3 = team_games_df.groupby('team').head(n_3)
df_all_pp_1 = df_pp_1.copy()
df_all_pp_2 = df_pp_2.copy()
df_all_pp_3 = df_pp_3.copy()
df_all_pp_1_final = df_all_pp_1.groupby(['player_id','Player','Team','Position']).sum()[['TOI_pp']].reset_index()
df_all_pp_2_final = df_all_pp_2.groupby(['player_id','Player','Team','Position']).sum()[['TOI_pp']].reset_index()
df_all_pp_3_final = df_all_pp_3.groupby(['player_id','Player','Team','Position']).sum()[['TOI_pp']].reset_index()
team_games_df_1_final = team_games_df_1.groupby(['abv']).sum()[['pp_toi']].reset_index()
team_games_df_2_final = team_games_df_2.groupby(['abv']).sum()[['pp_toi']].reset_index()
team_games_df_3_final = team_games_df_3.groupby(['abv']).sum()[['pp_toi']].reset_index()
df_final = df_all_pp_1_final.merge( df_all_pp_2_final,how='outer',left_on=['player_id'],right_on=['player_id'],suffixes=("","_2"))
df_final = df_final.merge( df_all_pp_3_final,how='outer',left_on=['player_id'],right_on=['player_id'],suffixes=("_1","_3"))
team_final = team_games_df_1_final.merge( team_games_df_2_final,how='outer',left_on=['abv'],right_on=['abv'],suffixes=("","_2"))
team_final = team_final.merge( team_games_df_3_final,how='outer',left_on=['abv'],right_on=['abv'],suffixes=("_1","_3"))
df_final = df_final.merge(team_final,left_on='Team_1',right_on='abv')
test = df_final[['player_id','Player_1','Team_1','Position_1','TOI_pp_1','TOI_pp_2','TOI_pp_3','pp_toi_1','pp_toi_2','pp_toi_3']]
test.columns = ['player_id','Player','Team','Position','TOI_1','TOI_2','TOI_3','pp_toi_1','pp_toi_2','pp_toi_3']
test = test.fillna('0')
test['PP%_1'] = test['TOI_1'].astype(float)/ test['pp_toi_1'].astype(float)
test['PP%_2'] = test['TOI_2'].astype(float)/ test['pp_toi_2'].astype(float)
test['PP%_3'] = test['TOI_3'].astype(float)/ test['pp_toi_3'].astype(float)
# test = test.fillna(0)
test['TOI_1'] = ["%d:%02d" % (int(x),(x*60)%60) for x in test['TOI_1'].astype(float)]
test['TOI_2'] = ["%d:%02d" % (int(x),(x*60)%60) for x in test['TOI_2'].astype(float)]
test['TOI_3'] = ["%d:%02d" % (int(x),(x*60)%60) for x in test['TOI_3'].astype(float)]
test = test.drop(['pp_toi_1','pp_toi_2','pp_toi_3'],axis=1)
test.columns = ['player_id','Player','Team','Position','L'+str(n_1)+' PP TOI','L'+str(n_2)+' PP TOI','L'+str(n_3)+' PP TOI','L'+str(n_1)+' PP%','L'+str(n_2)+' PP%','L'+str(n_3)+' PP%']
yahoo_df = yahoo_df_2.merge(yahoo_nhl_df,left_on = 'player_id',right_on='player_id_yahoo',suffixes=['','_y'])
yahoo_df.nhl_id = yahoo_df.nhl_id.astype(float)
test.player_id = test.player_id.astype(float)
test = test.merge(right=yahoo_df,left_on='player_id',right_on='nhl_id',suffixes=['','_y'],how='left')
test.loc[test.display_position.isna(),'display_position'] = test.loc[test.display_position.isna(),'Position']
test.display_position = test.display_position.replace({'L':'LW','R':'RW'})
test.percent_owned = test.percent_owned.fillna(0)
print('Column List')
print(test.columns)
print(list_of_columns)
test = test[list_of_columns]
test = test.rename(columns={'percent_owned':'Roster%'})
test = test.rename(columns={'display_position':'Position'})
top_d_score = test[(test.Team==input.team_id())].sort_values(by=['L'+str(n_1)+' PP%'],ascending=False).reset_index(drop=True)
if input.x():
top_d_score = top_d_score.dropna(axis='columns')
top_d_score = top_d_score.head(min(len(top_d_score),top_n))
#top_d_score.columns = list_of_columns_name
top_d_score['Deployment'] = "PP2"
top_d_score['Deployment'][0:5] = "PP1"
cols = top_d_score.columns.tolist();
print('we made it here',cols)
# for i in list(input.ignore_id()):
# print('we made it here')
# print(i)
# cols.remove(i)
# df_style_bang = top_d_score.head(10).style.background_gradient(cmap=co, subset=['L'+str(n_1)+' PP%','L'+str(n_2)+' PP%','L'+str(n_3)+' PP%','Roster%']).hide_index().set_properties(**{'Height': '12px'},**{'text-align': 'center'}).set_table_styles([{
# 'selector': 'caption',
# 'props': [
# ('color', ''),
# ('fontname', 'Century Gothic'),
# ('font-size', '20px'),
# ('font-style', 'italic'),
# ('font-weight', ''),
# ('text-align', 'centre'),
# ]
# },{'selector' :'th', 'props':[('text-align', 'center'),('Height','5px')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '13px'),('fontname', 'Century Gothic')]}]).format(
# {'L'+str(n_1)+' PP%': '{:.0%}',
# 'L'+str(n_2)+' PP%': '{:.0%}',
# 'L'+str(n_3)+' PP%': '{:.0%}',
# 'Roster%': '{:.0%}',
# },)
df_style_bang = top_d_score[cols].head(input.top_n()).style.background_gradient(cmap=co,vmin=0,vmax=1, subset=[x for x in cols if x.endswith('PP%')]).set_properties(**{'border': '3 px'},overwrite=False).set_table_styles([{
'selector': 'caption',
'props': [
('color', ''),
('fontname', 'Century Gothic'),
('font-size', '20px'),
('font-style', 'italic'),
('font-weight', ''),
('text-align', 'centre'),
]
},{'selector' :'th', 'props':[('text-align', 'center'),('Height','px'),('color','black'),(
'border', '1px black solid !important')]},{'selector' :'td', 'props':[('text-align', 'center'),('font-size', '18px'),('color','black')]}],overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'100px'},overwrite=False).set_properties(
**{'background-color':'White','index':'White','min-width':'200px'},overwrite=False,subset=cols[0]).set_table_styles(
[{'selector': 'th:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr:first-child', 'props': [('background-color', 'white')]}],overwrite=False).set_table_styles(
[{'selector': 'tr', 'props': [('line-height', '35px')]}],overwrite=False).set_properties(
**{'Height': '35px'},**{'text-align': 'center'},overwrite=False).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties(**{'border': '3 px','color':'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(top_d_score.index[:]),top_d_score.columns[:]))).set_properties(**{
'color': 'black'},overwrite=False).set_properties(
**{'border': '1px black solid !important'},subset = ((list(top_d_score.index[:]),top_d_score.columns[:]))).format(
{
'L'+str(n_1)+' PP%': '{:.0%}',
'L'+str(n_2)+' PP%': '{:.0%}',
'L'+str(n_3)+' PP%': '{:.0%}',
'Roster%': '{:.0%}',
},).background_gradient(cmap=co, subset=[x for x in cols if x.endswith('PP%')]).hide_index()
return df_style_bang
# test = test.fillna(0)
#test['PP TOI'] = ["%d:%02d" % (int(x),(x*60)%60) if x>0 else '0:00' for x in test['PP TOI']]
app = App(app_ui, server)
#time.sleep(60) |