|
import os |
|
import json |
|
import re |
|
import sys |
|
|
|
import gradio as gr |
|
from huggingface_hub import InferenceClient |
|
|
|
from langchain_huggingface import HuggingFaceEmbeddings |
|
|
|
|
|
|
|
from langchain.text_splitter import CharacterTextSplitter |
|
from langchain.embeddings import OpenAIEmbeddings |
|
from langchain.vectorstores import Chroma |
|
from langchain.document_loaders import PyPDFLoader |
|
from fastapi.encoders import jsonable_encoder |
|
|
|
""" |
|
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference |
|
""" |
|
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") |
|
|
|
|
|
|
|
|
|
|
|
embeddings = HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") |
|
|
|
|
|
ABS_PATH = os.path.dirname(os.path.abspath(__file__)) |
|
DB_DIR = os.path.join(ABS_PATH, "db") |
|
|
|
vectorstore = None |
|
|
|
def replace_newlines_and_spaces(text): |
|
|
|
text = text.replace("\n", " ") |
|
|
|
text = re.sub(r'\s+', ' ', text) |
|
return text |
|
|
|
|
|
def get_documents(): |
|
return PyPDFLoader("AI-smart-water-management-systems.pdf").load() |
|
|
|
|
|
def init_chromadb(): |
|
|
|
if os.path.exists(DB_DIR): |
|
import shutil |
|
shutil.rmtree(DB_DIR, ignore_errors=True) |
|
os.mkdir(DB_DIR) |
|
|
|
documents = [] |
|
for num, doc in enumerate(get_documents()): |
|
doc.page_content = replace_newlines_and_spaces(doc.page_content) |
|
documents.append(doc) |
|
|
|
|
|
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
|
|
|
|
vectorstore = Chroma.from_documents(texts, embeddings, persist_directory=DB_DIR) |
|
vectorstore.persist() |
|
print("vectorstore::", vectorstore) |
|
|
|
def query_chromadb(ASK): |
|
if not os.path.exists(DB_DIR): |
|
raise Exception(f"{DB_DIR} does not exist, nothing can be queried") |
|
|
|
|
|
vectorstore = Chroma(persist_directory=DB_DIR, embedding_function=embeddings) |
|
|
|
result = vectorstore.similarity_search_with_score(query=ASK, k=4) |
|
jsonable_result = jsonable_encoder(result) |
|
print("Json pdf response ::", json.dumps(jsonable_result, indent=2)) |
|
|
|
|
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for val in history: |
|
if val[0]: |
|
messages.append({"role": "user", "content": val[0]}) |
|
if val[1]: |
|
messages.append({"role": "assistant", "content": val[1]}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
response = "" |
|
|
|
for message in client.chat_completion( |
|
messages, |
|
max_tokens=max_tokens, |
|
stream=True, |
|
temperature=temperature, |
|
top_p=top_p, |
|
): |
|
print ("**message :: ",message) |
|
|
|
token = message.choices[0].delta.content |
|
|
|
print ("**token :: ",token) |
|
|
|
response += token |
|
|
|
print ("**response :: ",response) |
|
|
|
yield response |
|
print ("**query_chromadb::",query_chromadb("how could an AI be used in smart water management systems?")) |
|
|
|
|
|
|
|
""" |
|
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface |
|
""" |
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), |
|
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), |
|
gr.Slider( |
|
minimum=0.1, |
|
maximum=1.0, |
|
value=0.95, |
|
step=0.05, |
|
label="Top-p (nucleus sampling)", |
|
), |
|
], |
|
) |
|
|
|
|
|
|
|
def main(): |
|
init_chromadb() |
|
demo.launch() |
|
|
|
if __name__ == "__main__": |
|
main() |
|
|
|
|