nikravan's picture
Update app.py
ec5921d verified
import json
import subprocess
from threading import Thread
import torch
import spaces
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, TextIteratorStreamer
subprocess.run('pip install flash-attn --no-build-isolation', env={'FLASH_ATTENTION_SKIP_CUDA_BUILD': "TRUE"}, shell=True)
MODEL_ID = "deepseek-ai/DeepSeek-R1-Distill-Qwen-14B"
CHAT_TEMPLATE = "َAuto"
MODEL_NAME = MODEL_ID.split("/")[-1]
CONTEXT_LENGTH = 16000
# Estableciendo valores directamente para las variables
COLOR = "black" # Color predeterminado de la interfaz
EMOJI = "🤖" # Emoji predeterminado para el modelo
DESCRIPTION = f"This is 4bit quntized {MODEL_NAME} model with BnB and designed for testing thinking for general AI tasks." # Descripción predeterminada
latex_delimiters_set = [{
"left": "\\(",
"right": "\\)",
"display": False
}, {
"left": "\\begin{equation}",
"right": "\\end{equation}",
"display": True
}, {
"left": "\\begin{align}",
"right": "\\end{align}",
"display": True
}, {
"left": "\\begin{alignat}",
"right": "\\end{alignat}",
"display": True
}, {
"left": "\\begin{gather}",
"right": "\\end{gather}",
"display": True
}, {
"left": "\\begin{CD}",
"right": "\\end{CD}",
"display": True
}, {
"left": "\\[",
"right": "\\]",
"display": True
}]
@spaces.GPU()
def predict(message, history, system_prompt, temperature, max_new_tokens, top_k, repetition_penalty, top_p):
# Format history with a given chat template
# stop_tokens = ["<|endoftext|>", "<|im_end|>"]
# instruction = '<|im_start|>system\n' + system_prompt + '\n<|im_end|>\n'
# for user, assistant in history:
# instruction += f'<|im_start|>user\n{user}\n<|im_end|>\n<|im_start|>assistant\n{assistant}\n<|im_end|>\n'
# instruction += f'<|im_start|>user\n{message}\n<|im_end|>\n<|im_start|>assistant\n'
stop_tokens = ["<|endoftext|>", "<|im_end|>"]
instruction = '<|System|>\n' + system_prompt + '\n'
for user, assistant in history:
instruction += f'<|User|>\n{user}\n<|Assistant|>\n{assistant}\n'
instruction += f'<|User|>\n{message}\n<think>\n'
print(instruction)
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
enc = tokenizer(instruction, return_tensors="pt", padding=True, truncation=True)
input_ids, attention_mask = enc.input_ids, enc.attention_mask
if input_ids.shape[1] > CONTEXT_LENGTH:
input_ids = input_ids[:, -CONTEXT_LENGTH:]
attention_mask = attention_mask[:, -CONTEXT_LENGTH:]
generate_kwargs = dict(
input_ids=input_ids.to(device),
attention_mask=attention_mask.to(device),
streamer=streamer,
do_sample=True,
temperature=temperature,
max_new_tokens=max_new_tokens,
top_k=top_k,
repetition_penalty=repetition_penalty,
top_p=top_p
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for new_token in streamer:
outputs.append(new_token)
if new_token in stop_tokens:
break
yield "".join(outputs)
# Load model
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.bfloat16
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
quantization_config=quantization_config,
attn_implementation="flash_attention_2",
)
# Create Gradio interface
gr.ChatInterface(
predict,
title=EMOJI + " " + MODEL_NAME,
description=DESCRIPTION,
additional_inputs_accordion=gr.Accordion(label="⚙️ Parameters", open=False),
additional_inputs=[
gr.Textbox("You are a useful assistant. first recognize user request and then reply carfuly and thinking", label="System prompt"),
gr.Slider(0, 1, 0.6, label="Temperature"),
gr.Slider(0, 30000, 20000, label="Max new tokens"),
gr.Slider(1, 80, 40, label="Top K sampling"),
gr.Slider(0, 2, 1.1, label="Repetition penalty"),
gr.Slider(0, 1, 0.95, label="Top P sampling"),
],
#theme=gr.themes.Soft(primary_hue=COLOR),
).queue().launch()