Spaces:
Sleeping
Sleeping
nileshhanotia
commited on
Commit
•
de7d627
1
Parent(s):
0a83766
Update app.py
Browse files
app.py
CHANGED
@@ -1,73 +1,56 @@
|
|
1 |
-
import streamlit as st
|
2 |
import os
|
|
|
3 |
from datasets import load_dataset
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
5 |
-
import pandas as pd
|
6 |
-
from io import StringIO
|
7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
def preprocess_function(examples):
|
9 |
-
if 'prompt' not in examples:
|
10 |
-
raise ValueError("Key 'prompt' not found in examples. Please check your dataset fields.")
|
11 |
return tokenizer(examples['prompt'], truncation=True, padding="max_length", max_length=128)
|
12 |
|
13 |
-
|
14 |
-
|
15 |
-
dataset = load_dataset('json', data_files={'train': training_data})
|
16 |
-
|
17 |
-
# Initialize the tokenizer and model
|
18 |
-
model_name = 'mistral/Mixtral-8x7B' # Replace with the correct model name
|
19 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
20 |
-
model = AutoModelForCausalLM.from_pretrained(model_name)
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
#
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
# Initialize the Trainer
|
39 |
trainer = Trainer(
|
40 |
model=model, # The model to train
|
41 |
args=training_args, # Training arguments
|
42 |
train_dataset=tokenized_dataset, # Training dataset
|
43 |
)
|
44 |
-
|
45 |
-
# Start training
|
46 |
trainer.train()
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
st.write("File uploaded successfully!")
|
56 |
-
|
57 |
-
# Read the file into a pandas DataFrame
|
58 |
-
file_contents = uploaded_file.read().decode("utf-8")
|
59 |
-
st.write("Preview of uploaded data:")
|
60 |
-
st.text(file_contents[:1000]) # Display first 1000 characters for preview
|
61 |
-
|
62 |
-
# Save the file to a temporary location
|
63 |
-
temp_file_path = 'training_data.json'
|
64 |
-
with open(temp_file_path, 'w') as f:
|
65 |
-
f.write(file_contents)
|
66 |
-
|
67 |
-
# Call the train_model function
|
68 |
-
st.write("Training the model...")
|
69 |
-
train_model(temp_file_path)
|
70 |
-
st.write("Training completed!")
|
71 |
|
72 |
-
|
73 |
-
|
|
|
|
|
1 |
import os
|
2 |
+
import streamlit as st
|
3 |
from datasets import load_dataset
|
4 |
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments
|
|
|
|
|
5 |
|
6 |
+
# Load training data
|
7 |
+
@st.cache
|
8 |
+
def load_data():
|
9 |
+
return load_dataset('json', data_files='training_data.json')
|
10 |
+
|
11 |
+
dataset = load_data()
|
12 |
+
|
13 |
+
# Initialize the tokenizer and model
|
14 |
+
model_name = 'mistral/Mixtral-8x7B' # Replace with the correct model name
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
16 |
+
model = AutoModelForCausalLM.from_pretrained(model_name)
|
17 |
+
|
18 |
+
# Define a preprocessing function
|
19 |
def preprocess_function(examples):
|
|
|
|
|
20 |
return tokenizer(examples['prompt'], truncation=True, padding="max_length", max_length=128)
|
21 |
|
22 |
+
# Tokenize the dataset
|
23 |
+
tokenized_dataset = dataset['train'].map(preprocess_function, batched=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Define training arguments
|
26 |
+
training_args = TrainingArguments(
|
27 |
+
output_dir='./results', # Output directory
|
28 |
+
evaluation_strategy='epoch', # Evaluation strategy
|
29 |
+
learning_rate=2e-5, # Learning rate
|
30 |
+
per_device_train_batch_size=4, # Batch size for training
|
31 |
+
per_device_eval_batch_size=4, # Batch size for evaluation
|
32 |
+
num_train_epochs=3, # Number of training epochs
|
33 |
+
weight_decay=0.01, # Strength of weight decay
|
34 |
+
logging_dir='./logs', # Directory for storing logs
|
35 |
+
logging_steps=10, # Log every 10 steps
|
36 |
+
)
|
37 |
+
|
38 |
+
# Define the training function
|
39 |
+
def train_model():
|
|
|
|
|
40 |
trainer = Trainer(
|
41 |
model=model, # The model to train
|
42 |
args=training_args, # Training arguments
|
43 |
train_dataset=tokenized_dataset, # Training dataset
|
44 |
)
|
|
|
|
|
45 |
trainer.train()
|
46 |
|
47 |
+
# Streamlit UI
|
48 |
+
st.title("Fine-Tuning a Language Model")
|
49 |
+
|
50 |
+
if st.button('Start Training'):
|
51 |
+
with st.spinner('Training in progress...'):
|
52 |
+
train_model()
|
53 |
+
st.success('Training completed!')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
54 |
|
55 |
+
# Display some example outputs (optional)
|
56 |
+
st.write("Example training data:", dataset['train'].select(range(5)))
|