Spaces:
Runtime error
Runtime error
import gradio as gr | |
from transformers import AutoModelForSequenceClassification, AutoTokenizer | |
import torch | |
model_name = "nmarinnn/bert-bregman" | |
model = AutoModelForSequenceClassification.from_pretrained(model_name) | |
tokenizer = AutoTokenizer.from_pretrained(model_name) | |
def predict(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512) | |
with torch.no_grad(): | |
outputs = model(**inputs) | |
probabilities = torch.nn.functional.softmax(outputs.logits, dim=-1) | |
predicted_class = torch.argmax(probabilities, dim=-1).item() | |
class_labels = {0: "negativo", 1: "neutro", 2: "positivo"} | |
predicted_label = class_labels[predicted_class] | |
predicted_probability = probabilities[0][predicted_class].item() | |
result = f"Clase predicha: {predicted_label} (probabilidad = {predicted_probability:.2f})\n" | |
result += f"Probabilidades: Negativo: {probabilities[0][0]:.2f}, Neutro: {probabilities[0][1]:.2f}, Positivo: {probabilities[0][2]:.2f}" | |
return result | |
iface = gr.Interface( | |
fn=predict, | |
inputs=gr.Textbox(lines=2, placeholder="Ingrese el texto aquí..."), | |
outputs="text", | |
title="Clasificador de Sentimientos", | |
description="Este modelo clasifica el sentimiento del texto como negativo, neutro o positivo." | |
) | |
iface.launch() |