import json | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
import torch | |
# Define the schema for the database | |
db_schema = { | |
"products": ["product_id", "name", "price", "description", "type"], | |
"orders": ["order_id", "product_id", "quantity", "order_date"], | |
"customers": ["customer_id", "name", "email", "phone_number"] | |
} | |
def dummy_function(schema_description, user_question): | |
print(user_question) | |
# Schema as a context for the model | |
schema_description = json.dumps(db_schema, indent=4) | |
# Example interactive questions | |
print("Ask a question about the database schema.") | |
while True: | |
user_question = input("Question: ") | |
if user_question.lower() in ["exit", "quit"]: | |
print("Exiting...") | |
break | |
# Generate SQL query | |
sql_query = dummy_function(schema_description, user_question) | |
print(f"Generated SQL Query:\n{sql_query}\n") | |