okeowo1014 commited on
Commit
14e8902
1 Parent(s): a7b6739

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +48 -47
app.py CHANGED
@@ -1,57 +1,58 @@
1
  import streamlit as st
 
2
  import numpy as np
3
  from tensorflow.keras.preprocessing import image
4
- from tensorflow.keras.models import load_model
5
 
6
- # Define constants
7
- IMG_WIDTH, IMG_HEIGHT = 224, 224 # Adjust if your model requires different dimensions
8
- model_path = 'dog_cat_classifier_model.keras' # Replace with your model path
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- # Load the model (outside the main app function for efficiency)
11
- model = load_model(model_path)
12
 
13
  def main():
14
- """
15
- Streamlit app for image classification with user-friendly interface.
16
- """
17
-
18
- # Title and description
19
- st.title("Intriguing Image Classifier")
20
- st.write("Upload an image and discover its most likely category along with probabilities in a compelling way!")
21
-
22
- # File uploader and sidebar for image selection
23
- uploaded_file = st.file_uploader("Choose an Image", type=['jpg', 'jpeg', 'png'])
24
- image_selected = st.sidebar.selectbox("Select Image", (None, "Uploaded Image"))
25
-
26
- if uploaded_file is not None:
27
- image_display = image.load_img(uploaded_file, target_size=(IMG_WIDTH, IMG_HEIGHT))
28
- st.image(image_display, caption="Uploaded Image", use_column_width=True)
29
- image_selected = "Uploaded Image"
30
-
31
- # Preprocess image if one is selected
32
- if image_selected:
33
- img_array = image.img_to_array(image_display)
34
- img_array = np.expand_dims(img_array, axis=0)
35
- img_array /= 255.0 # Rescale pixel values to [0, 1]
36
-
37
- # Make predictions and get class labels (assuming your model outputs probabilities)
38
- predictions = model.predict(img_array)
39
- class_labels = [f"{label}: {prob:.2%}" for label, prob in zip(get_class_labels(model), predictions[0])]
40
-
41
- # Display predictions in an intriguing way (replace with your preferred method)
42
- st.header("Predictions:")
43
- progress_bar_width = 800 # Adjust for desired visual style
44
-
45
- for label, prob in zip(class_labels, predictions[0]):
46
- progress_bar = st.progress(label)
47
- progress_bar.progress(int(prob * 100)) # Update progress bar based on probability
48
-
49
- # Function to retrieve class labels from the model (replace if your model structure is different)
50
- def get_class_labels(model):
51
- class_names = list(model.class_names) # Assuming class names are directly accessible
52
- return class_names
53
 
54
- main()
 
 
 
55
 
 
 
 
 
56
  # if __name__ == '__main__':
57
- # main()
 
1
  import streamlit as st
2
+ import cv2
3
  import numpy as np
4
  from tensorflow.keras.preprocessing import image
5
+ import tensorflow as tf
6
 
7
+ # Load the saved model (replace with your model filename)
8
+ model = tf.keras.models.load_model('cat_dog_classifier.keras')
9
+
10
+ # Image dimensions for the model
11
+ img_width, img_height = 224, 224
12
+
13
+
14
+ def preprocess_image(img):
15
+ """Preprocesses an image for prediction."""
16
+ img = cv2.resize(img, (img_width, img_height))
17
+ img = img.astype('float32') / 255.0
18
+ img = np.expand_dims(img, axis=0)
19
+ return img
20
+
21
+
22
+ def predict_class(image):
23
+ """Predicts image class and probabilities."""
24
+ preprocessed_img = preprocess_image(image)
25
+ prediction = model.predict(preprocessed_img)
26
+ class_names = ['cat', 'dog'] # Adjust class names according to your model
27
+ return class_names[np.argmax(prediction)], np.max(prediction)
28
+
29
+
30
+ def display_results(class_name, probability):
31
+ """Displays prediction results in a progress bar style."""
32
+ st.write(f"**Predicted Class:** {class_name}")
33
+
34
+ # Create a progress bar using st.progress
35
+ progress = st.progress(0)
36
+ for i in range(100):
37
+ progress.progress(i + 1)
38
+ if i == int(probability * 100):
39
+ break
40
+ st.write(f"**Probability:** {probability:.2f}")
41
 
 
 
42
 
43
  def main():
44
+ """Main app function."""
45
+ st.title("Image Classifier")
46
+ st.write("Upload an image to classify it as cat or dog.")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
47
 
48
+ uploaded_file = st.file_uploader("Choose an image...", type="jpg")
49
+ if uploaded_file is not None:
50
+ image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR)
51
+ st.image(image, caption="Uploaded Image", use_column_width=True)
52
 
53
+ predicted_class, probability = predict_class(image)
54
+ display_results(predicted_class, probability)
55
+
56
+ main()
57
  # if __name__ == '__main__':
58
+ # main()