Spaces:
Sleeping
Sleeping
import streamlit as st | |
import train | |
# import tr | |
# import prd | |
x = st.slider('Select a value') | |
st.write(x, 'squared is', x * 86) | |
# import streamlit as st | |
# import cv2 | |
# import numpy as np | |
# from tensorflow.keras.preprocessing import image | |
# import tensorflow as tf | |
# from huggingface_hub import from_pretrained_keras | |
# model = from_pretrained_keras("okeowo1014/catsanddogsmodel") | |
# # Load the saved model (replace with your model filename) | |
# # model = tf.keras.models.load_model('cat_dog_classifier.keras') | |
# # Image dimensions for the model | |
# img_width, img_height = 224, 224 | |
# def preprocess_image(img): | |
# """Preprocesses an image for prediction.""" | |
# img = cv2.resize(img, (img_width, img_height)) | |
# img = img.astype('float32') / 255.0 | |
# img = np.expand_dims(img, axis=0) | |
# return img | |
# def predict_class(image): | |
# """Predicts image class and probabilities.""" | |
# preprocessed_img = preprocess_image(image) | |
# prediction = model.predict(preprocessed_img) | |
# class_names = ['cat', 'dog'] # Adjust class names according to your model | |
# return class_names[np.argmax(prediction)], np.max(prediction) | |
# def display_results(class_name, probability): | |
# """Displays prediction results in a progress bar style.""" | |
# st.write(f"**Predicted Class:** {class_name}") | |
# # Create a progress bar using st.progress | |
# progress = st.progress(0) | |
# for i in range(100): | |
# progress.progress(i + 1) | |
# if i == int(probability * 100): | |
# break | |
# st.write(f"**Probability:** {probability:.2f}") | |
# def main(): | |
# """Main app function.""" | |
# st.title("Image Classifier") | |
# st.write("Upload an image to classify it as cat or dog.") | |
# uploaded_file = st.file_uploader("Choose an image...", type="jpg") | |
# if uploaded_file is not None: | |
# image = cv2.imdecode(np.frombuffer(uploaded_file.read(), np.uint8), cv2.IMREAD_COLOR) | |
# st.image(image, caption="Uploaded Image", use_column_width=True) | |
# predicted_class, probability = predict_class(image) | |
# display_results(predicted_class, probability) | |
# main() |