File size: 9,144 Bytes
7c1cc3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
import gradio as gr
from langchain.document_loaders import ArxivLoader
from PyPDF2 import PdfReader
from langchain_community.llms import HuggingFaceHub
from langchain.text_splitter import TokenTextSplitter
from langchain.chains.summarize import load_summarize_chain
from langchain.document_loaders import PyPDFLoader
from transformers import pipeline
from dotenv import load_dotenv
import os
load_dotenv()
hugging_api_key = os.getenv('HUGGING_API_KEY')
from groq import AsyncGroq
from groq import Groq
from langchain_groq import ChatGroq
from langchain.document_loaders import ArxivLoader
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.embeddings.huggingface_hub import HuggingFaceHubEmbeddings
from huggingface_hub import login
login(hugging_api_key)
embedding_model = HuggingFaceHubEmbeddings(huggingfacehub_api_token=hugging_api_key)
llm = ChatGroq(temperature=0, model_name="llama3-70b-8192", api_key = "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")
def display_results(result):
return "\n".join(result) # Join each entry with double newlines for better readability
def summarize_pdf(pdf_file_path, max_length):
# summarizer = pipeline('summarization', model='allenai/led-large-16384-arxiv', min_length=100, max_length=max_length, device=0)
loader = PdfReader(pdf_file_path)
text = """ """
for page in loader.pages:
text += page.extract_text()
text_splitter = TokenTextSplitter(chunk_size=8192, chunk_overlap=1000)
chunks = text_splitter.split_text(text)
summary = ""
for i in range(len(chunks)):
# text = chunks[i].page_content
text = chunks[i]
summary += summarize_text(text)
# summary = str(max_length)
return summary
def summarize_text(text):
sum_client = Groq(api_key="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")
messages = []
# messages.append({"role": "system", "content": "You are arxiv paper summarizer. If I give you the doi number, you should only output summarization. Summarization should be more than 10% words of the paper. For example, in the paper there are 500 words, than summarization should be more than 50 words."})
messages.append({"role": "system", "content": "You are summarizer. If I give you the whole text you should summarize it. And you don't need the title and author"})
messages = messages + [
{
"role": "user",
"content": f"Summarize the paper. The whole text is {text}",
},
]
response = sum_client.chat.completions.create(
messages=messages,
model="llama3-70b-8192",
temperature=0,
max_tokens=8192,
top_p=1,
stop=None
)
text_summary = response.choices[0].message.content
return text_summary
def remove_first_sentence_and_title(text):
# Remove the first sentence
first_sentence_end = text.find('. ') + 2 # Find the end of the first sentence
text_without_first_sentence = text[first_sentence_end:]
# Remove the title
title_start = text_without_first_sentence.find('**Title:**')
if title_start != -1:
title_end = text_without_first_sentence.find('\n', title_start)
if title_end != -1:
text_without_title = text_without_first_sentence[:title_start] + text_without_first_sentence[title_end+1:]
else:
text_without_title = text_without_first_sentence[:title_start]
else:
text_without_title = text_without_first_sentence
return text_without_title.strip()
def summarize_arxiv_pdf(query):
loader = ArxivLoader(query=query, load_max_docs=10)
documents = loader.load()
text_splitter = TokenTextSplitter(chunk_size=5700, chunk_overlap=100)
chunks = text_splitter.split_documents(documents)
text = documents[0].page_content
ref_summary = ""
for i in range(len(chunks)):
text = chunks[i].page_content
ref_summary += summarize_text(text)
# ref_summary = ref_summary.split('paper:')[1]
# ref_summary = remove_first_sentence_and_title(ref_summary)
ref_summary = ref_summary.replace("Here is a summary of the paper:", "").strip()
arxiv_summary = loader.get_summaries_as_docs()
summaries = []
for doc in arxiv_summary:
title = doc.metadata.get("Title")
authors = doc.metadata.get("Authors")
url = doc.metadata.get("Entry ID")
summary = doc.page_content
summaries.append(f"**{title}**\n")
summaries.append(f"**Authors:** {authors}\n")
summaries.append(f"**View full paper:** [Link to paper]({url})\n")
summaries.append(f"**Summary:** {summary}\n")
summaries.append(f"**Lazyman Summary:**\n ")
summaries.append(f"{ref_summary}")
summaries = display_results(summaries)
print(summaries)
return summaries
client = AsyncGroq(api_key="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")
async def chat_with_replit(message, history):
messages = []
for chat in history:
user = str(chat[0])
assistant = str(chat[1])
messages.append({"role": "system", "content": "You are assistor. I will ask you some questions than you should answer!"})
messages.append({"role": 'user', "content": user})
messages.append({"role": 'assistant', "content": assistant})
messages = messages + [
{
"role": "user",
"content": str(message),
},
]
print(messages)
response_content = ""
stream = await client.chat.completions.create(
messages=messages,
model="llama3-70b-8192",
temperature=0,
max_tokens=1024,
top_p=1,
stop=None,
stream=True,
)
async for chunk in stream:
content = chunk.choices[0].delta.content
if content:
response_content += chunk.choices[0].delta.content
yield response_content
js = """<script src="https://replit.com/public/js/replit-badge-v2.js" theme="dark" position="bottom-right"></script>"""
async def chat_with_replit_pdf(message, history, doi_num):
messages = []
old_doi = "old"
if old_doi != doi_num:
loader = ArxivLoader(query=str(doi_num), load_max_docs=10)
documents = loader.load_and_split()
metadata = documents[0].metadata
vector_store = Chroma.from_documents(documents, embedding_model)
old_doi = doi_num
def retrieve_relevant_content(user_query):
results = vector_store.similarity_search(user_query, k=3)
relevant_content = "\n\n".join([doc.page_content for doc in results])
return relevant_content
relevant_content = retrieve_relevant_content(message)
messages = messages + [
{
"role": "user",
"content": str(message),
},
{
"role": "system",
"content": f"You should answer about this arxiv paper for {doi_num}.\n"
f"This is the metadata of the paper:{metadata}.\n"
f"This is relevant information of the paper:{relevant_content}.\n"
}
]
print(messages)
response_content = ""
stream = await client.chat.completions.create(
messages=messages,
model="llama3-70b-8192",
temperature=0,
max_tokens=1024,
top_p=1,
stop=None,
stream=False,
)
return stream.choices[0].message.content;
with gr.Blocks() as app:
with gr.Tab(label="Arxiv summarization"):
with gr.Column():
number = gr.Textbox(label="Enter your arxiv number")
sumarxiv_btn = gr.Button(value="summarize-arxiv")
with gr.Column():
outputs = gr.Markdown(label="Summary", height=1000)
sumarxiv_btn.click(summarize_arxiv_pdf, inputs=number, outputs=outputs)
with gr.Tab(label="Local summarization"):
with gr.Row():
with gr.Column():
input_path = gr.File(label="Upload PDF file")
with gr.Column():
# set_temperature = gr.Slider(0, 1, value=0, step=0.1, label="temperature")
set_max_length = gr.Slider(512, 4096, value=2048, step=512, label="max length")
sumlocal_btn = gr.Button(value="summarize-local")
with gr.Row():
output_local = gr.Markdown(label="summary", height=1000)
sumlocal_btn.click(summarize_pdf, inputs=[input_path, set_max_length], outputs=output_local)
with gr.Tab(label="ChatBot"):
gr.ChatInterface(chat_with_replit,
examples=[
"Explain about the attention is all you need",
"Who is the inventor of the GAN",
"What is the main idea style transfer?"
])
with gr.Tab(label="Chat with pdf"):
gr.ChatInterface(fn = chat_with_replit_pdf,
additional_inputs = [
gr.Textbox(label="doi", placeholder="Enter doi number")
],
type="messages")
app.launch() |