Spaces:
Running
Running
import gradio as gr | |
import torch | |
import torchaudio | |
from df import enhance, init_df | |
# Initialize DeepFilterNet model | |
model, df_state, _ = init_df() | |
def denoise_audio(audio): | |
# Load the input audio file | |
waveform, sample_rate = torchaudio.load(audio) | |
# Denoise the audio | |
enhanced_audio = enhance(model, df_state, waveform) | |
# Save and return the enhanced audio file | |
output_file = "enhanced_output.wav" | |
torchaudio.save(output_file, enhanced_audio, sample_rate) | |
return output_file | |
# Gradio interface | |
iface = gr.Interface( | |
fn=denoise_audio, | |
inputs=gr.Audio(source="upload", type="filepath"), | |
outputs="file", | |
title="DeepFilterNet Audio Denoising", | |
description="Upload an audio file to remove noise using DeepFilterNet." | |
) | |
iface.launch() | |