Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
from annotator.mmpkg.mmcv.cnn import NonLocal2d | |
from torch import nn | |
from ..builder import HEADS | |
from .fcn_head import FCNHead | |
class DisentangledNonLocal2d(NonLocal2d): | |
"""Disentangled Non-Local Blocks. | |
Args: | |
temperature (float): Temperature to adjust attention. Default: 0.05 | |
""" | |
def __init__(self, *arg, temperature, **kwargs): | |
super().__init__(*arg, **kwargs) | |
self.temperature = temperature | |
self.conv_mask = nn.Conv2d(self.in_channels, 1, kernel_size=1) | |
def embedded_gaussian(self, theta_x, phi_x): | |
"""Embedded gaussian with temperature.""" | |
# NonLocal2d pairwise_weight: [N, HxW, HxW] | |
pairwise_weight = torch.matmul(theta_x, phi_x) | |
if self.use_scale: | |
# theta_x.shape[-1] is `self.inter_channels` | |
pairwise_weight /= theta_x.shape[-1]**0.5 | |
pairwise_weight /= self.temperature | |
pairwise_weight = pairwise_weight.softmax(dim=-1) | |
return pairwise_weight | |
def forward(self, x): | |
# x: [N, C, H, W] | |
n = x.size(0) | |
# g_x: [N, HxW, C] | |
g_x = self.g(x).view(n, self.inter_channels, -1) | |
g_x = g_x.permute(0, 2, 1) | |
# theta_x: [N, HxW, C], phi_x: [N, C, HxW] | |
if self.mode == 'gaussian': | |
theta_x = x.view(n, self.in_channels, -1) | |
theta_x = theta_x.permute(0, 2, 1) | |
if self.sub_sample: | |
phi_x = self.phi(x).view(n, self.in_channels, -1) | |
else: | |
phi_x = x.view(n, self.in_channels, -1) | |
elif self.mode == 'concatenation': | |
theta_x = self.theta(x).view(n, self.inter_channels, -1, 1) | |
phi_x = self.phi(x).view(n, self.inter_channels, 1, -1) | |
else: | |
theta_x = self.theta(x).view(n, self.inter_channels, -1) | |
theta_x = theta_x.permute(0, 2, 1) | |
phi_x = self.phi(x).view(n, self.inter_channels, -1) | |
# subtract mean | |
theta_x -= theta_x.mean(dim=-2, keepdim=True) | |
phi_x -= phi_x.mean(dim=-1, keepdim=True) | |
pairwise_func = getattr(self, self.mode) | |
# pairwise_weight: [N, HxW, HxW] | |
pairwise_weight = pairwise_func(theta_x, phi_x) | |
# y: [N, HxW, C] | |
y = torch.matmul(pairwise_weight, g_x) | |
# y: [N, C, H, W] | |
y = y.permute(0, 2, 1).contiguous().reshape(n, self.inter_channels, | |
*x.size()[2:]) | |
# unary_mask: [N, 1, HxW] | |
unary_mask = self.conv_mask(x) | |
unary_mask = unary_mask.view(n, 1, -1) | |
unary_mask = unary_mask.softmax(dim=-1) | |
# unary_x: [N, 1, C] | |
unary_x = torch.matmul(unary_mask, g_x) | |
# unary_x: [N, C, 1, 1] | |
unary_x = unary_x.permute(0, 2, 1).contiguous().reshape( | |
n, self.inter_channels, 1, 1) | |
output = x + self.conv_out(y + unary_x) | |
return output | |
class DNLHead(FCNHead): | |
"""Disentangled Non-Local Neural Networks. | |
This head is the implementation of `DNLNet | |
<https://arxiv.org/abs/2006.06668>`_. | |
Args: | |
reduction (int): Reduction factor of projection transform. Default: 2. | |
use_scale (bool): Whether to scale pairwise_weight by | |
sqrt(1/inter_channels). Default: False. | |
mode (str): The nonlocal mode. Options are 'embedded_gaussian', | |
'dot_product'. Default: 'embedded_gaussian.'. | |
temperature (float): Temperature to adjust attention. Default: 0.05 | |
""" | |
def __init__(self, | |
reduction=2, | |
use_scale=True, | |
mode='embedded_gaussian', | |
temperature=0.05, | |
**kwargs): | |
super(DNLHead, self).__init__(num_convs=2, **kwargs) | |
self.reduction = reduction | |
self.use_scale = use_scale | |
self.mode = mode | |
self.temperature = temperature | |
self.dnl_block = DisentangledNonLocal2d( | |
in_channels=self.channels, | |
reduction=self.reduction, | |
use_scale=self.use_scale, | |
conv_cfg=self.conv_cfg, | |
norm_cfg=self.norm_cfg, | |
mode=self.mode, | |
temperature=self.temperature) | |
def forward(self, inputs): | |
"""Forward function.""" | |
x = self._transform_inputs(inputs) | |
output = self.convs[0](x) | |
output = self.dnl_block(output) | |
output = self.convs[1](output) | |
if self.concat_input: | |
output = self.conv_cat(torch.cat([x, output], dim=1)) | |
output = self.cls_seg(output) | |
return output | |