Spaces:
Running
on
A10G
Running
on
A10G
import torch | |
from annotator.mmpkg.mmcv.cnn import ContextBlock | |
from ..builder import HEADS | |
from .fcn_head import FCNHead | |
class GCHead(FCNHead): | |
"""GCNet: Non-local Networks Meet Squeeze-Excitation Networks and Beyond. | |
This head is the implementation of `GCNet | |
<https://arxiv.org/abs/1904.11492>`_. | |
Args: | |
ratio (float): Multiplier of channels ratio. Default: 1/4. | |
pooling_type (str): The pooling type of context aggregation. | |
Options are 'att', 'avg'. Default: 'avg'. | |
fusion_types (tuple[str]): The fusion type for feature fusion. | |
Options are 'channel_add', 'channel_mul'. Default: ('channel_add',) | |
""" | |
def __init__(self, | |
ratio=1 / 4., | |
pooling_type='att', | |
fusion_types=('channel_add', ), | |
**kwargs): | |
super(GCHead, self).__init__(num_convs=2, **kwargs) | |
self.ratio = ratio | |
self.pooling_type = pooling_type | |
self.fusion_types = fusion_types | |
self.gc_block = ContextBlock( | |
in_channels=self.channels, | |
ratio=self.ratio, | |
pooling_type=self.pooling_type, | |
fusion_types=self.fusion_types) | |
def forward(self, inputs): | |
"""Forward function.""" | |
x = self._transform_inputs(inputs) | |
output = self.convs[0](x) | |
output = self.gc_block(output) | |
output = self.convs[1](output) | |
if self.concat_input: | |
output = self.conv_cat(torch.cat([x, output], dim=1)) | |
output = self.cls_seg(output) | |
return output | |