feynbot-ir / app.py
pendrag's picture
answer prompt fixed
a98fd29
from openai import OpenAI
import google.generativeai as genai
import os
import requests
import json
import gradio as gr
import time
import re
#export GRADIO_DEBUG=1
GENAI_API = "gemini" # or "openai"
def search_inspire(query, size=10):
"""
Search INSPIRE HEP database using fulltext search
Args:
query (str): Search query
size (int): Number of results to return
"""
base_url = "https://inspirehep.net/api/literature"
params = {
"q": query,
"size": size,
"format": "json"
}
response = requests.get(base_url, params=params)
return response.json()
def format_reference(metadata):
output = f"{', '.join(author.get('full_name', '') for author in metadata.get('authors', []))} "
output += f"({metadata.get('publication_info', [{}])[0].get('year', 'N/A')}). "
output += f"*{metadata.get('titles', [{}])[0].get('title', 'N/A')}*. "
output += f"DOI: {metadata.get('dois', [{}])[0].get('value', 'N/A') if metadata.get('dois') else 'N/A'}. "
output += f"[INSPIRE record {metadata['control_number']}](https://inspirehep.net/literature/{metadata['control_number']})"
output += "\n\n"
return output
def format_results(results):
"""Print formatted search results"""
output = ""
for i, hit in enumerate(results['hits']['hits']):
metadata = hit['metadata']
output += f"**[{i}]** "
output += format_reference(metadata)
return output
def results_context(results):
""" Prepare a context from the results for the LLM """
context = ""
for i, hit in enumerate(results['hits']['hits']):
metadata = hit['metadata']
context += f"Result [{i}]\n\n"
context += f"Title: {metadata.get('titles', [{}])[0].get('title', 'N/A')}\n\n"
context += f"Abstract: {metadata.get('abstracts', [{}])[0].get('value', 'N/A')}\n\n"
return context
def user_prompt(query, context):
""" Generate a prompt for the LLM """
prompt = f"""
QUERY: {query}
CONTEXT:
{context}
ANSWER:
"""
return prompt
def llm_expand_query(query):
""" Expands a query to variations of fulltext searches """
prompt = f"""
Expand this query into a the query format used for a search
over the INSPIRE HEP database. Propose alternatives of the query to
maximize the recall and join those variantes using OR operators.
Just provide the expanded query, without explanations.
Example of query:
how far are black holes?
Expanded query:
"how far are black holes" OR "distance from black holes" OR
"distances to black holes" OR "measurement of distance to black
holes" OR "remoteness of black holes" OR "distance to black
holes" OR "how far are singularities" OR "distance to
singularities" OR "distances to event horizon" OR "distance
from Schwarzschild radius" OR "black hole distance"
Query: {query}
Expanded query:
"""
if GENAI_API == "openai":
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}
],
response_format={
"type": "text"
},
temperature=0,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].message.content
else:
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(prompt)
return response.text
def llm_generate_answer(prompt):
""" Generate a response from the LLM """
system_desc = """You are part of a Retrieval Augmented Generation system
(RAG) and are asked with a query and a context of results. Generate an
answer substantiated by the results provided and citing them using
their index when used to provide an answer text. Do not put two or more
references together (ex: use [1][2] instead of [1, 2] or [1][2][3] instead of [1, 2, 3]). Do not generate an answer
that cannot be entailed from cited abstract, so all paragraphs should cite a
search result. End the answer with the query and a brief answer as
summary of the previous discussed results. Do not consider results
that are not related to the query and, if no specific answer can be
provided, assert that in the brief answer."""
if GENAI_API == "openai":
response = client.chat.completions.create(
model="gpt-4o-mini",
messages=[
{
"role": "system",
"content": [
{
"type": "text",
"text": system_desc
}
]
},
{
"role": "user",
"content": [
{
"type": "text",
"text": prompt
}
]
}
],
response_format={
"type": "text"
},
temperature=0,
max_tokens=2048,
top_p=1,
frequency_penalty=0,
presence_penalty=0
)
return response.choices[0].message.content
else:
response = genai.GenerativeModel("gemini-1.5-flash").generate_content(system_desc + "\n\n" + prompt)
return response.text
def clean_refs(answer, results):
""" Clean the references from the answer """
# Find references
unique_ordered = []
for match in re.finditer(r'\[(\d+)\]', answer):
ref_num = int(match.group(1))
if ref_num not in unique_ordered:
unique_ordered.append(ref_num)
# Filter references
new_i = 1
new_results = ""
for i, hit in enumerate(results['hits']['hits']):
if i not in unique_ordered:
continue
metadata = hit['metadata']
new_results += f"**[{new_i}]** "
new_results += format_reference(metadata)
new_i += 1
new_i = 1
for i in unique_ordered:
answer = answer.replace(f"[{i}]", f" **[__NEW_REF_ID_{new_i}]**")
new_i += 1
answer = answer.replace("__NEW_REF_ID_", "")
return answer, new_results
def search(query, progress=gr.Progress()):
time.sleep(1)
progress(0, desc="Expanding query...")
expanded_query = llm_expand_query(query)
progress(0.25, desc="Searching INSPIRE HEP...")
results = search_inspire(expanded_query)
progress(0.50, desc="Generating answer...")
context = results_context(results)
prompt = user_prompt(query, context)
answer = llm_generate_answer(prompt)
new_answer, references = clean_refs(answer, results)
progress(1, desc="Done!")
#json_str = json.dumps(results['hits']['hits'][0]['metadata'], indent=4)
return "**Answer**:\n\n" + new_answer +"\n\n**References**:\n\n" + references #+ "\n\n <pre>\n" + json_str + "</pre>"
# ----------- MAIN ------------------------------------------------------------
if GENAI_API == "openai":
client = OpenAI()
else:
genai.configure(api_key=os.getenv('GEMINI_API_KEY'))
with gr.Blocks() as demo:
gr.Markdown("# Feynbot on INSPIRE HEP Search")
gr.Markdown("""Specialized academic search tool that combines traditional
database searching with AI-powered query expansion and result
synthesis, focused on High Energy Physics research papers.""")
with gr.Row():
with gr.Column():
query = gr.Textbox(label="Search Query")
search_btn = gr.Button("Search")
examples = gr.Examples([["Which one is closest star?"], ["In which particles does the Higgs Boson decay to?"]], query)
with gr.Row():
gr.HTML("<a href='https://sinai.ujaen.es'><img src='https://sinai.ujaen.es/sites/default/files/SINAI%20-%20logo%20tx%20azul%20%5Baf%5D.png' width='200'></img></a>")
gr.HTML("<a href='https://www.ujaen.es'><img src='https://diariodigital.ujaen.es/sites/default/files/general/logo-uja.svg' width='180'></img></a>")
with gr.Column():
results = gr.Markdown("Answer will appear here...", label="Search Results", )
search_btn.click(fn=search, inputs=query, outputs=results, api_name="search", show_progress=True)
demo.launch()
#print(search("how far are black holes?"))