File size: 8,908 Bytes
931f95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9ed59
931f95f
 
 
 
 
 
 
 
 
 
 
9c9ed59
931f95f
 
9c9ed59
931f95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9c9ed59
 
931f95f
 
 
 
 
 
 
 
9c9ed59
 
 
 
 
 
 
 
 
 
 
 
 
 
ca677a9
9c9ed59
 
 
 
 
 
 
 
931f95f
 
 
9c9ed59
931f95f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# from huggingface_hub import InferenceClient
# import gradio as gr

# client = InferenceClient(
#     "mistralai/Mixtral-8x7B-Instruct-v0.1"
# )


# def format_prompt(message, history):
#   prompt = "<s>"
#   for user_prompt, bot_response in history:
#     prompt += f"[INST] {user_prompt} [/INST]"
#     prompt += f" {bot_response}</s> "
#   prompt += f"[INST] {message} [/INST]"
#   return prompt

# def generate(
#     prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
# ):
#     temperature = float(temperature)
#     if temperature < 1e-2:
#         temperature = 1e-2
#     top_p = float(top_p)

#     generate_kwargs = dict(
#         temperature=temperature,
#         max_new_tokens=max_new_tokens,
#         top_p=top_p,
#         repetition_penalty=repetition_penalty,
#         do_sample=True,
#         seed=42,
#     )

#     formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
#     stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
#     output = ""

#     for response in stream:
#         output += response.token.text
#         yield output
#     return output


# additional_inputs=[
#     gr.Textbox(
#         label="System Prompt",
#         max_lines=1,
#         interactive=True,
#     ),
#     gr.Slider(
#         label="Temperature",
#         value=0.9,
#         minimum=0.0,
#         maximum=1.0,
#         step=0.05,
#         interactive=True,
#         info="Higher values produce more diverse outputs",
#     ),
#     gr.Slider(
#         label="Max new tokens",
#         value=256,
#         minimum=0,
#         maximum=1048,
#         step=64,
#         interactive=True,
#         info="The maximum numbers of new tokens",
#     ),
#     gr.Slider(
#         label="Top-p (nucleus sampling)",
#         value=0.90,
#         minimum=0.0,
#         maximum=1,
#         step=0.05,
#         interactive=True,
#         info="Higher values sample more low-probability tokens",
#     ),
#     gr.Slider(
#         label="Repetition penalty",
#         value=1.2,
#         minimum=1.0,
#         maximum=2.0,
#         step=0.05,
#         interactive=True,
#         info="Penalize repeated tokens",
#     )
# ]

# examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
#           ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
#           ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
#           ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
#           ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
#           ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
#          ]

# gr.ChatInterface(
#     fn=generate,
#     chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
#     additional_inputs=additional_inputs,
#     title="Mixtral 46.7B",
#     examples=examples,
#     concurrency_limit=20,
# ).launch(show_api= True)


import os
import gradio as gr
from PyPDF2 import PdfReader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceBgeEmbeddings
from langchain.vectorstores import FAISS
from langchain.chat_models import ChatOpenAI
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from huggingface_hub import InferenceClient

# Set the Hugging Face Hub API token
os.environ["HUGGINGFACEHUB_API_TOKEN"] = st.secrets['huggingface_token']

# Initialize the InferenceClient
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")

def get_pdf_text(pdf_docs):
    text = ""
    for pdf in pdf_docs:
        pdf_reader = PdfReader(pdf)
        for page in pdf_reader.pages:
            text += page.extract_text()
    return text

def get_text_chunks(text):
    text_splitter = CharacterTextSplitter(
        separator="\n", chunk_size=1500, chunk_overlap=300, length_function=len
    )
    chunks = text_splitter.split_text(text)
    return chunks

def get_vectorstore(text_chunks):
    model = "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2"
    encode_kwargs = {"normalize_embeddings": True}
    embeddings = HuggingFaceBgeEmbeddings(
        model_name=model, encode_kwargs=encode_kwargs, model_kwargs={"device": "cpu"}
    )
    vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings)
    return vectorstore

def format_prompt(message, history):
    prompt = "<s>"
    for user_prompt, bot_response in history:
        prompt += f"[INST] {user_prompt} [/INST]"
        prompt += f" {bot_response}</s> "
    prompt += f"[INST] {message} [/INST]"
    return prompt

def generate(prompt, history, system_prompt, temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)

    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        do_sample=True,
        seed=42,
    )

    formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
    stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
    output = ""

    for response in stream:
        output += response.token.text
        yield output
    return output

def main(pdf_docs):
    # get pdf text
    raw_text = get_pdf_text(pdf_docs)

    # get the text chunks
    text_chunks = get_text_chunks(raw_text)

    # create vector store
    vectorstore = get_vectorstore(text_chunks)

    # create conversation chain
    conversation_chain = get_conversation_chain(vectorstore)

    additional_inputs=[
        gr.Textbox(
            label="System Prompt",
            max_lines=1,
            interactive=True,
        ),
        gr.Slider(
            label="Temperature",
            value=0.9,
            minimum=0.0,
            maximum=1.0,
            step=0.05,
            interactive=True,
            info="Higher values produce more diverse outputs",
        ),
        gr.Slider(
            label="Max new tokens",
            value=256,
            minimum=0,
            maximum=1048,
            step=64,
            interactive=True,
            info="The maximum numbers of new tokens",
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            value=0.90,
            minimum=0.0,
            maximum=1,
            step=0.05,
            interactive=True,
            info="Higher values sample more low-probability tokens",
        ),
        gr.Slider(
            label="Repetition penalty",
            value=1.2,
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            interactive=True,
            info="Penalize repeated tokens",
        )
    ]

    examples=[["I'm planning a vacation to Japan. Can you suggest a one-week itinerary including must-visit places and local cuisines to try?", None, None, None, None, None, ],
              ["Can you write a short story about a time-traveling detective who solves historical mysteries?", None, None, None, None, None,],
              ["I'm trying to learn French. Can you provide some common phrases that would be useful for a beginner, along with their pronunciations?", None, None, None, None, None,],
              ["I have chicken, rice, and bell peppers in my kitchen. Can you suggest an easy recipe I can make with these ingredients?", None, None, None, None, None,],
              ["Can you explain how the QuickSort algorithm works and provide a Python implementation?", None, None, None, None, None,],
              ["What are some unique features of Rust that make it stand out compared to other systems programming languages like C++?", None, None, None, None, None,],
             ]

    gr.ChatInterface(
        fn=generate,
        chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"),
        additional_inputs=additional_inputs,
        title="Mixtral 46.7B",
        examples=examples,
        concurrency_limit=20,
    ).launch(show_api= True)

if __name__ == "__main__":
    main([])