Spaces:
Runtime error
Runtime error
LuChengTHU
commited on
Commit
β’
531ea40
1
Parent(s):
69e4d47
add dpm-solver support (much faster than plms)
Browse filesFormer-commit-id: 8ee518a5a26d8f57d61985f81dc19d7e17a74a7d
ldm/models/diffusion/dpm_solver/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
from .sampler import DPMSolverSampler
|
ldm/models/diffusion/dpm_solver/dpm_solver.py
ADDED
@@ -0,0 +1,1157 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn.functional as F
|
3 |
+
import math
|
4 |
+
|
5 |
+
|
6 |
+
class NoiseScheduleVP:
|
7 |
+
def __init__(
|
8 |
+
self,
|
9 |
+
schedule='discrete',
|
10 |
+
betas=None,
|
11 |
+
alphas_cumprod=None,
|
12 |
+
continuous_beta_0=0.1,
|
13 |
+
continuous_beta_1=20.,
|
14 |
+
):
|
15 |
+
"""Create a wrapper class for the forward SDE (VP type).
|
16 |
+
|
17 |
+
***
|
18 |
+
Update: We support discrete-time diffusion models by implementing a picewise linear interpolation for log_alpha_t.
|
19 |
+
We recommend to use schedule='discrete' for the discrete-time diffusion models, especially for high-resolution images.
|
20 |
+
***
|
21 |
+
|
22 |
+
The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ).
|
23 |
+
We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper).
|
24 |
+
Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have:
|
25 |
+
|
26 |
+
log_alpha_t = self.marginal_log_mean_coeff(t)
|
27 |
+
sigma_t = self.marginal_std(t)
|
28 |
+
lambda_t = self.marginal_lambda(t)
|
29 |
+
|
30 |
+
Moreover, as lambda(t) is an invertible function, we also support its inverse function:
|
31 |
+
|
32 |
+
t = self.inverse_lambda(lambda_t)
|
33 |
+
|
34 |
+
===============================================================
|
35 |
+
|
36 |
+
We support both discrete-time DPMs (trained on n = 0, 1, ..., N-1) and continuous-time DPMs (trained on t in [t_0, T]).
|
37 |
+
|
38 |
+
1. For discrete-time DPMs:
|
39 |
+
|
40 |
+
For discrete-time DPMs trained on n = 0, 1, ..., N-1, we convert the discrete steps to continuous time steps by:
|
41 |
+
t_i = (i + 1) / N
|
42 |
+
e.g. for N = 1000, we have t_0 = 1e-3 and T = t_{N-1} = 1.
|
43 |
+
We solve the corresponding diffusion ODE from time T = 1 to time t_0 = 1e-3.
|
44 |
+
|
45 |
+
Args:
|
46 |
+
betas: A `torch.Tensor`. The beta array for the discrete-time DPM. (See the original DDPM paper for details)
|
47 |
+
alphas_cumprod: A `torch.Tensor`. The cumprod alphas for the discrete-time DPM. (See the original DDPM paper for details)
|
48 |
+
|
49 |
+
Note that we always have alphas_cumprod = cumprod(betas). Therefore, we only need to set one of `betas` and `alphas_cumprod`.
|
50 |
+
|
51 |
+
**Important**: Please pay special attention for the args for `alphas_cumprod`:
|
52 |
+
The `alphas_cumprod` is the \hat{alpha_n} arrays in the notations of DDPM. Specifically, DDPMs assume that
|
53 |
+
q_{t_n | 0}(x_{t_n} | x_0) = N ( \sqrt{\hat{alpha_n}} * x_0, (1 - \hat{alpha_n}) * I ).
|
54 |
+
Therefore, the notation \hat{alpha_n} is different from the notation alpha_t in DPM-Solver. In fact, we have
|
55 |
+
alpha_{t_n} = \sqrt{\hat{alpha_n}},
|
56 |
+
and
|
57 |
+
log(alpha_{t_n}) = 0.5 * log(\hat{alpha_n}).
|
58 |
+
|
59 |
+
|
60 |
+
2. For continuous-time DPMs:
|
61 |
+
|
62 |
+
We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise
|
63 |
+
schedule are the default settings in DDPM and improved-DDPM:
|
64 |
+
|
65 |
+
Args:
|
66 |
+
beta_min: A `float` number. The smallest beta for the linear schedule.
|
67 |
+
beta_max: A `float` number. The largest beta for the linear schedule.
|
68 |
+
cosine_s: A `float` number. The hyperparameter in the cosine schedule.
|
69 |
+
cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule.
|
70 |
+
T: A `float` number. The ending time of the forward process.
|
71 |
+
|
72 |
+
===============================================================
|
73 |
+
|
74 |
+
Args:
|
75 |
+
schedule: A `str`. The noise schedule of the forward SDE. 'discrete' for discrete-time DPMs,
|
76 |
+
'linear' or 'cosine' for continuous-time DPMs.
|
77 |
+
Returns:
|
78 |
+
A wrapper object of the forward SDE (VP type).
|
79 |
+
|
80 |
+
===============================================================
|
81 |
+
|
82 |
+
Example:
|
83 |
+
|
84 |
+
# For discrete-time DPMs, given betas (the beta array for n = 0, 1, ..., N - 1):
|
85 |
+
>>> ns = NoiseScheduleVP('discrete', betas=betas)
|
86 |
+
|
87 |
+
# For discrete-time DPMs, given alphas_cumprod (the \hat{alpha_n} array for n = 0, 1, ..., N - 1):
|
88 |
+
>>> ns = NoiseScheduleVP('discrete', alphas_cumprod=alphas_cumprod)
|
89 |
+
|
90 |
+
# For continuous-time DPMs (VPSDE), linear schedule:
|
91 |
+
>>> ns = NoiseScheduleVP('linear', continuous_beta_0=0.1, continuous_beta_1=20.)
|
92 |
+
|
93 |
+
"""
|
94 |
+
|
95 |
+
if schedule not in ['discrete', 'linear', 'cosine']:
|
96 |
+
raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'discrete' or 'linear' or 'cosine'".format(schedule))
|
97 |
+
|
98 |
+
self.schedule = schedule
|
99 |
+
if schedule == 'discrete':
|
100 |
+
if betas is not None:
|
101 |
+
log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0)
|
102 |
+
else:
|
103 |
+
assert alphas_cumprod is not None
|
104 |
+
log_alphas = 0.5 * torch.log(alphas_cumprod)
|
105 |
+
self.total_N = len(log_alphas)
|
106 |
+
self.T = 1.
|
107 |
+
self.t_array = torch.linspace(0., 1., self.total_N + 1)[1:].reshape((1, -1))
|
108 |
+
self.log_alpha_array = log_alphas.reshape((1, -1,))
|
109 |
+
else:
|
110 |
+
self.total_N = 1000
|
111 |
+
self.beta_0 = continuous_beta_0
|
112 |
+
self.beta_1 = continuous_beta_1
|
113 |
+
self.cosine_s = 0.008
|
114 |
+
self.cosine_beta_max = 999.
|
115 |
+
self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
116 |
+
self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.))
|
117 |
+
self.schedule = schedule
|
118 |
+
if schedule == 'cosine':
|
119 |
+
# For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T.
|
120 |
+
# Note that T = 0.9946 may be not the optimal setting. However, we find it works well.
|
121 |
+
self.T = 0.9946
|
122 |
+
else:
|
123 |
+
self.T = 1.
|
124 |
+
|
125 |
+
def marginal_log_mean_coeff(self, t):
|
126 |
+
"""
|
127 |
+
Compute log(alpha_t) of a given continuous-time label t in [0, T].
|
128 |
+
"""
|
129 |
+
if self.schedule == 'discrete':
|
130 |
+
return interpolate_fn(t.reshape((-1, 1)), self.t_array.to(t.device), self.log_alpha_array.to(t.device)).reshape((-1))
|
131 |
+
elif self.schedule == 'linear':
|
132 |
+
return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0
|
133 |
+
elif self.schedule == 'cosine':
|
134 |
+
log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.))
|
135 |
+
log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0
|
136 |
+
return log_alpha_t
|
137 |
+
|
138 |
+
def marginal_alpha(self, t):
|
139 |
+
"""
|
140 |
+
Compute alpha_t of a given continuous-time label t in [0, T].
|
141 |
+
"""
|
142 |
+
return torch.exp(self.marginal_log_mean_coeff(t))
|
143 |
+
|
144 |
+
def marginal_std(self, t):
|
145 |
+
"""
|
146 |
+
Compute sigma_t of a given continuous-time label t in [0, T].
|
147 |
+
"""
|
148 |
+
return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t)))
|
149 |
+
|
150 |
+
def marginal_lambda(self, t):
|
151 |
+
"""
|
152 |
+
Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T].
|
153 |
+
"""
|
154 |
+
log_mean_coeff = self.marginal_log_mean_coeff(t)
|
155 |
+
log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff))
|
156 |
+
return log_mean_coeff - log_std
|
157 |
+
|
158 |
+
def inverse_lambda(self, lamb):
|
159 |
+
"""
|
160 |
+
Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t.
|
161 |
+
"""
|
162 |
+
if self.schedule == 'linear':
|
163 |
+
tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
164 |
+
Delta = self.beta_0**2 + tmp
|
165 |
+
return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0)
|
166 |
+
elif self.schedule == 'discrete':
|
167 |
+
log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb)
|
168 |
+
t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_array.to(lamb.device), [1]), torch.flip(self.t_array.to(lamb.device), [1]))
|
169 |
+
return t.reshape((-1,))
|
170 |
+
else:
|
171 |
+
log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb))
|
172 |
+
t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s
|
173 |
+
t = t_fn(log_alpha)
|
174 |
+
return t
|
175 |
+
|
176 |
+
|
177 |
+
def model_wrapper(
|
178 |
+
model,
|
179 |
+
noise_schedule,
|
180 |
+
model_type="noise",
|
181 |
+
model_kwargs={},
|
182 |
+
guidance_type="uncond",
|
183 |
+
condition=None,
|
184 |
+
unconditional_condition=None,
|
185 |
+
guidance_scale=1.,
|
186 |
+
classifier_fn=None,
|
187 |
+
classifier_kwargs={},
|
188 |
+
):
|
189 |
+
"""Create a wrapper function for the noise prediction model.
|
190 |
+
|
191 |
+
DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to
|
192 |
+
firstly wrap the model function to a noise prediction model that accepts the continuous time as the input.
|
193 |
+
|
194 |
+
We support four types of the diffusion model by setting `model_type`:
|
195 |
+
|
196 |
+
1. "noise": noise prediction model. (Trained by predicting noise).
|
197 |
+
|
198 |
+
2. "x_start": data prediction model. (Trained by predicting the data x_0 at time 0).
|
199 |
+
|
200 |
+
3. "v": velocity prediction model. (Trained by predicting the velocity).
|
201 |
+
The "v" prediction is derivation detailed in Appendix D of [1], and is used in Imagen-Video [2].
|
202 |
+
|
203 |
+
[1] Salimans, Tim, and Jonathan Ho. "Progressive distillation for fast sampling of diffusion models."
|
204 |
+
arXiv preprint arXiv:2202.00512 (2022).
|
205 |
+
[2] Ho, Jonathan, et al. "Imagen Video: High Definition Video Generation with Diffusion Models."
|
206 |
+
arXiv preprint arXiv:2210.02303 (2022).
|
207 |
+
|
208 |
+
4. "score": marginal score function. (Trained by denoising score matching).
|
209 |
+
Note that the score function and the noise prediction model follows a simple relationship:
|
210 |
+
```
|
211 |
+
noise(x_t, t) = -sigma_t * score(x_t, t)
|
212 |
+
```
|
213 |
+
|
214 |
+
We support three types of guided sampling by DPMs by setting `guidance_type`:
|
215 |
+
1. "uncond": unconditional sampling by DPMs.
|
216 |
+
The input `model` has the following format:
|
217 |
+
``
|
218 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
219 |
+
``
|
220 |
+
|
221 |
+
2. "classifier": classifier guidance sampling [3] by DPMs and another classifier.
|
222 |
+
The input `model` has the following format:
|
223 |
+
``
|
224 |
+
model(x, t_input, **model_kwargs) -> noise | x_start | v | score
|
225 |
+
``
|
226 |
+
|
227 |
+
The input `classifier_fn` has the following format:
|
228 |
+
``
|
229 |
+
classifier_fn(x, t_input, cond, **classifier_kwargs) -> logits(x, t_input, cond)
|
230 |
+
``
|
231 |
+
|
232 |
+
[3] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis,"
|
233 |
+
in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794.
|
234 |
+
|
235 |
+
3. "classifier-free": classifier-free guidance sampling by conditional DPMs.
|
236 |
+
The input `model` has the following format:
|
237 |
+
``
|
238 |
+
model(x, t_input, cond, **model_kwargs) -> noise | x_start | v | score
|
239 |
+
``
|
240 |
+
And if cond == `unconditional_condition`, the model output is the unconditional DPM output.
|
241 |
+
|
242 |
+
[4] Ho, Jonathan, and Tim Salimans. "Classifier-free diffusion guidance."
|
243 |
+
arXiv preprint arXiv:2207.12598 (2022).
|
244 |
+
|
245 |
+
|
246 |
+
The `t_input` is the time label of the model, which may be discrete-time labels (i.e. 0 to 999)
|
247 |
+
or continuous-time labels (i.e. epsilon to T).
|
248 |
+
|
249 |
+
We wrap the model function to accept only `x` and `t_continuous` as inputs, and outputs the predicted noise:
|
250 |
+
``
|
251 |
+
def model_fn(x, t_continuous) -> noise:
|
252 |
+
t_input = get_model_input_time(t_continuous)
|
253 |
+
return noise_pred(model, x, t_input, **model_kwargs)
|
254 |
+
``
|
255 |
+
where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver.
|
256 |
+
|
257 |
+
===============================================================
|
258 |
+
|
259 |
+
Args:
|
260 |
+
model: A diffusion model with the corresponding format described above.
|
261 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
262 |
+
model_type: A `str`. The parameterization type of the diffusion model.
|
263 |
+
"noise" or "x_start" or "v" or "score".
|
264 |
+
model_kwargs: A `dict`. A dict for the other inputs of the model function.
|
265 |
+
guidance_type: A `str`. The type of the guidance for sampling.
|
266 |
+
"uncond" or "classifier" or "classifier-free".
|
267 |
+
condition: A pytorch tensor. The condition for the guided sampling.
|
268 |
+
Only used for "classifier" or "classifier-free" guidance type.
|
269 |
+
unconditional_condition: A pytorch tensor. The condition for the unconditional sampling.
|
270 |
+
Only used for "classifier-free" guidance type.
|
271 |
+
guidance_scale: A `float`. The scale for the guided sampling.
|
272 |
+
classifier_fn: A classifier function. Only used for the classifier guidance.
|
273 |
+
classifier_kwargs: A `dict`. A dict for the other inputs of the classifier function.
|
274 |
+
Returns:
|
275 |
+
A noise prediction model that accepts the noised data and the continuous time as the inputs.
|
276 |
+
"""
|
277 |
+
|
278 |
+
def get_model_input_time(t_continuous):
|
279 |
+
"""
|
280 |
+
Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time.
|
281 |
+
For discrete-time DPMs, we convert `t_continuous` in [1 / N, 1] to `t_input` in [0, 1000 * (N - 1) / N].
|
282 |
+
For continuous-time DPMs, we just use `t_continuous`.
|
283 |
+
"""
|
284 |
+
if noise_schedule.schedule == 'discrete':
|
285 |
+
return (t_continuous - 1. / noise_schedule.total_N) * 1000.
|
286 |
+
else:
|
287 |
+
return t_continuous
|
288 |
+
|
289 |
+
def noise_pred_fn(x, t_continuous, cond=None):
|
290 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
291 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
292 |
+
t_input = get_model_input_time(t_continuous)
|
293 |
+
if cond is None:
|
294 |
+
output = model(x, t_input, **model_kwargs)
|
295 |
+
else:
|
296 |
+
output = model(x, t_input, cond, **model_kwargs)
|
297 |
+
if model_type == "noise":
|
298 |
+
return output
|
299 |
+
elif model_type == "x_start":
|
300 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
301 |
+
dims = x.dim()
|
302 |
+
return (x - expand_dims(alpha_t, dims) * output) / expand_dims(sigma_t, dims)
|
303 |
+
elif model_type == "v":
|
304 |
+
alpha_t, sigma_t = noise_schedule.marginal_alpha(t_continuous), noise_schedule.marginal_std(t_continuous)
|
305 |
+
dims = x.dim()
|
306 |
+
return expand_dims(alpha_t, dims) * output + expand_dims(sigma_t, dims) * x
|
307 |
+
elif model_type == "score":
|
308 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
309 |
+
dims = x.dim()
|
310 |
+
return -expand_dims(sigma_t, dims) * output
|
311 |
+
|
312 |
+
def cond_grad_fn(x, t_input):
|
313 |
+
"""
|
314 |
+
Compute the gradient of the classifier, i.e. nabla_{x} log p_t(cond | x_t).
|
315 |
+
"""
|
316 |
+
with torch.enable_grad():
|
317 |
+
x_in = x.detach().requires_grad_(True)
|
318 |
+
log_prob = classifier_fn(x_in, t_input, condition, **classifier_kwargs)
|
319 |
+
return torch.autograd.grad(log_prob.sum(), x_in)[0]
|
320 |
+
|
321 |
+
def model_fn(x, t_continuous):
|
322 |
+
"""
|
323 |
+
The noise predicition model function that is used for DPM-Solver.
|
324 |
+
"""
|
325 |
+
if t_continuous.reshape((-1,)).shape[0] == 1:
|
326 |
+
t_continuous = t_continuous.expand((x.shape[0]))
|
327 |
+
if guidance_type == "uncond":
|
328 |
+
return noise_pred_fn(x, t_continuous)
|
329 |
+
elif guidance_type == "classifier":
|
330 |
+
assert classifier_fn is not None
|
331 |
+
t_input = get_model_input_time(t_continuous)
|
332 |
+
cond_grad = cond_grad_fn(x, t_input)
|
333 |
+
sigma_t = noise_schedule.marginal_std(t_continuous)
|
334 |
+
noise = noise_pred_fn(x, t_continuous)
|
335 |
+
return noise - guidance_scale * expand_dims(sigma_t, dims=cond_grad.dim()) * cond_grad
|
336 |
+
elif guidance_type == "classifier-free":
|
337 |
+
if guidance_scale == 1. or unconditional_condition is None:
|
338 |
+
return noise_pred_fn(x, t_continuous, cond=condition)
|
339 |
+
else:
|
340 |
+
x_in = torch.cat([x] * 2)
|
341 |
+
t_in = torch.cat([t_continuous] * 2)
|
342 |
+
c_in = torch.cat([unconditional_condition, condition])
|
343 |
+
noise_uncond, noise = noise_pred_fn(x_in, t_in, cond=c_in).chunk(2)
|
344 |
+
return noise_uncond + guidance_scale * (noise - noise_uncond)
|
345 |
+
|
346 |
+
assert model_type in ["noise", "x_start", "v"]
|
347 |
+
assert guidance_type in ["uncond", "classifier", "classifier-free"]
|
348 |
+
return model_fn
|
349 |
+
|
350 |
+
|
351 |
+
class DPM_Solver:
|
352 |
+
def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.):
|
353 |
+
"""Construct a DPM-Solver.
|
354 |
+
|
355 |
+
We support both the noise prediction model ("predicting epsilon") and the data prediction model ("predicting x0").
|
356 |
+
If `predict_x0` is False, we use the solver for the noise prediction model (DPM-Solver).
|
357 |
+
If `predict_x0` is True, we use the solver for the data prediction model (DPM-Solver++).
|
358 |
+
In such case, we further support the "dynamic thresholding" in [1] when `thresholding` is True.
|
359 |
+
The "dynamic thresholding" can greatly improve the sample quality for pixel-space DPMs with large guidance scales.
|
360 |
+
|
361 |
+
Args:
|
362 |
+
model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]):
|
363 |
+
``
|
364 |
+
def model_fn(x, t_continuous):
|
365 |
+
return noise
|
366 |
+
``
|
367 |
+
noise_schedule: A noise schedule object, such as NoiseScheduleVP.
|
368 |
+
predict_x0: A `bool`. If true, use the data prediction model; else, use the noise prediction model.
|
369 |
+
thresholding: A `bool`. Valid when `predict_x0` is True. Whether to use the "dynamic thresholding" in [1].
|
370 |
+
max_val: A `float`. Valid when both `predict_x0` and `thresholding` are True. The max value for thresholding.
|
371 |
+
|
372 |
+
[1] Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S Sara Mahdavi, Rapha Gontijo Lopes, et al. Photorealistic text-to-image diffusion models with deep language understanding. arXiv preprint arXiv:2205.11487, 2022b.
|
373 |
+
"""
|
374 |
+
self.model = model_fn
|
375 |
+
self.noise_schedule = noise_schedule
|
376 |
+
self.predict_x0 = predict_x0
|
377 |
+
self.thresholding = thresholding
|
378 |
+
self.max_val = max_val
|
379 |
+
|
380 |
+
def noise_prediction_fn(self, x, t):
|
381 |
+
"""
|
382 |
+
Return the noise prediction model.
|
383 |
+
"""
|
384 |
+
return self.model(x, t)
|
385 |
+
|
386 |
+
def data_prediction_fn(self, x, t):
|
387 |
+
"""
|
388 |
+
Return the data prediction model (with thresholding).
|
389 |
+
"""
|
390 |
+
noise = self.noise_prediction_fn(x, t)
|
391 |
+
dims = x.dim()
|
392 |
+
alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t)
|
393 |
+
x0 = (x - expand_dims(sigma_t, dims) * noise) / expand_dims(alpha_t, dims)
|
394 |
+
if self.thresholding:
|
395 |
+
p = 0.995 # A hyperparameter in the paper of "Imagen" [1].
|
396 |
+
s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1)
|
397 |
+
s = expand_dims(torch.maximum(s, torch.ones_like(s).to(s.device)), dims)
|
398 |
+
x0 = torch.clamp(x0, -s, s) / (s / self.max_val)
|
399 |
+
return x0
|
400 |
+
|
401 |
+
def model_fn(self, x, t):
|
402 |
+
"""
|
403 |
+
Convert the model to the noise prediction model or the data prediction model.
|
404 |
+
"""
|
405 |
+
if self.predict_x0:
|
406 |
+
return self.data_prediction_fn(x, t)
|
407 |
+
else:
|
408 |
+
return self.noise_prediction_fn(x, t)
|
409 |
+
|
410 |
+
def get_time_steps(self, skip_type, t_T, t_0, N, device):
|
411 |
+
"""Compute the intermediate time steps for sampling.
|
412 |
+
|
413 |
+
Args:
|
414 |
+
skip_type: A `str`. The type for the spacing of the time steps. We support three types:
|
415 |
+
- 'logSNR': uniform logSNR for the time steps.
|
416 |
+
- 'time_uniform': uniform time for the time steps. (**Recommended for high-resolutional data**.)
|
417 |
+
- 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.)
|
418 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
419 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
420 |
+
N: A `int`. The total number of the spacing of the time steps.
|
421 |
+
device: A torch device.
|
422 |
+
Returns:
|
423 |
+
A pytorch tensor of the time steps, with the shape (N + 1,).
|
424 |
+
"""
|
425 |
+
if skip_type == 'logSNR':
|
426 |
+
lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device))
|
427 |
+
lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device))
|
428 |
+
logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device)
|
429 |
+
return self.noise_schedule.inverse_lambda(logSNR_steps)
|
430 |
+
elif skip_type == 'time_uniform':
|
431 |
+
return torch.linspace(t_T, t_0, N + 1).to(device)
|
432 |
+
elif skip_type == 'time_quadratic':
|
433 |
+
t_order = 2
|
434 |
+
t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device)
|
435 |
+
return t
|
436 |
+
else:
|
437 |
+
raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type))
|
438 |
+
|
439 |
+
def get_orders_for_singlestep_solver(self, steps, order):
|
440 |
+
"""
|
441 |
+
Get the order of each step for sampling by the singlestep DPM-Solver.
|
442 |
+
|
443 |
+
We combine both DPM-Solver-1,2,3 to use all the function evaluations, which is named as "DPM-Solver-fast".
|
444 |
+
Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is:
|
445 |
+
- If order == 1:
|
446 |
+
We take `steps` of DPM-Solver-1 (i.e. DDIM).
|
447 |
+
- If order == 2:
|
448 |
+
- Denote K = (steps // 2). We take K or (K + 1) intermediate time steps for sampling.
|
449 |
+
- If steps % 2 == 0, we use K steps of DPM-Solver-2.
|
450 |
+
- If steps % 2 == 1, we use K steps of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
451 |
+
- If order == 3:
|
452 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
453 |
+
- If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1.
|
454 |
+
- If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1.
|
455 |
+
- If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2.
|
456 |
+
|
457 |
+
============================================
|
458 |
+
Args:
|
459 |
+
order: A `int`. The max order for the solver (2 or 3).
|
460 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
461 |
+
Returns:
|
462 |
+
orders: A list of the solver order of each step.
|
463 |
+
"""
|
464 |
+
if order == 3:
|
465 |
+
K = steps // 3 + 1
|
466 |
+
if steps % 3 == 0:
|
467 |
+
orders = [3,] * (K - 2) + [2, 1]
|
468 |
+
elif steps % 3 == 1:
|
469 |
+
orders = [3,] * (K - 1) + [1]
|
470 |
+
else:
|
471 |
+
orders = [3,] * (K - 1) + [2]
|
472 |
+
return orders
|
473 |
+
elif order == 2:
|
474 |
+
K = steps // 2
|
475 |
+
if steps % 2 == 0:
|
476 |
+
orders = [2,] * K
|
477 |
+
else:
|
478 |
+
orders = [2,] * K + [1]
|
479 |
+
return orders
|
480 |
+
elif order == 1:
|
481 |
+
return [1,] * steps
|
482 |
+
else:
|
483 |
+
raise ValueError("'order' must be '1' or '2' or '3'.")
|
484 |
+
|
485 |
+
def denoise_fn(self, x, s):
|
486 |
+
"""
|
487 |
+
Denoise at the final step, which is equivalent to solve the ODE from lambda_s to infty by first-order discretization.
|
488 |
+
"""
|
489 |
+
return self.data_prediction_fn(x, s)
|
490 |
+
|
491 |
+
def dpm_solver_first_update(self, x, s, t, model_s=None, return_intermediate=False):
|
492 |
+
"""
|
493 |
+
DPM-Solver-1 (equivalent to DDIM) from time `s` to time `t`.
|
494 |
+
|
495 |
+
Args:
|
496 |
+
x: A pytorch tensor. The initial value at time `s`.
|
497 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
498 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
499 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
500 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
501 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`.
|
502 |
+
Returns:
|
503 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
504 |
+
"""
|
505 |
+
ns = self.noise_schedule
|
506 |
+
dims = x.dim()
|
507 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
508 |
+
h = lambda_t - lambda_s
|
509 |
+
log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t)
|
510 |
+
sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t)
|
511 |
+
alpha_t = torch.exp(log_alpha_t)
|
512 |
+
|
513 |
+
if self.predict_x0:
|
514 |
+
phi_1 = torch.expm1(-h)
|
515 |
+
if model_s is None:
|
516 |
+
model_s = self.model_fn(x, s)
|
517 |
+
x_t = (
|
518 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
519 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
520 |
+
)
|
521 |
+
if return_intermediate:
|
522 |
+
return x_t, {'model_s': model_s}
|
523 |
+
else:
|
524 |
+
return x_t
|
525 |
+
else:
|
526 |
+
phi_1 = torch.expm1(h)
|
527 |
+
if model_s is None:
|
528 |
+
model_s = self.model_fn(x, s)
|
529 |
+
x_t = (
|
530 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
531 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
532 |
+
)
|
533 |
+
if return_intermediate:
|
534 |
+
return x_t, {'model_s': model_s}
|
535 |
+
else:
|
536 |
+
return x_t
|
537 |
+
|
538 |
+
def singlestep_dpm_solver_second_update(self, x, s, t, r1=0.5, model_s=None, return_intermediate=False, solver_type='dpm_solver'):
|
539 |
+
"""
|
540 |
+
Singlestep solver DPM-Solver-2 from time `s` to time `t`.
|
541 |
+
|
542 |
+
Args:
|
543 |
+
x: A pytorch tensor. The initial value at time `s`.
|
544 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
545 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
546 |
+
r1: A `float`. The hyperparameter of the second-order solver.
|
547 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
548 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
549 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s` and `s1` (the intermediate time).
|
550 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
551 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
552 |
+
Returns:
|
553 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
554 |
+
"""
|
555 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
556 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
557 |
+
if r1 is None:
|
558 |
+
r1 = 0.5
|
559 |
+
ns = self.noise_schedule
|
560 |
+
dims = x.dim()
|
561 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
562 |
+
h = lambda_t - lambda_s
|
563 |
+
lambda_s1 = lambda_s + r1 * h
|
564 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
565 |
+
log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t)
|
566 |
+
sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t)
|
567 |
+
alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t)
|
568 |
+
|
569 |
+
if self.predict_x0:
|
570 |
+
phi_11 = torch.expm1(-r1 * h)
|
571 |
+
phi_1 = torch.expm1(-h)
|
572 |
+
|
573 |
+
if model_s is None:
|
574 |
+
model_s = self.model_fn(x, s)
|
575 |
+
x_s1 = (
|
576 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
577 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
578 |
+
)
|
579 |
+
model_s1 = self.model_fn(x_s1, s1)
|
580 |
+
if solver_type == 'dpm_solver':
|
581 |
+
x_t = (
|
582 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
583 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
584 |
+
- (0.5 / r1) * expand_dims(alpha_t * phi_1, dims) * (model_s1 - model_s)
|
585 |
+
)
|
586 |
+
elif solver_type == 'taylor':
|
587 |
+
x_t = (
|
588 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
589 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
590 |
+
+ (1. / r1) * expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * (model_s1 - model_s)
|
591 |
+
)
|
592 |
+
else:
|
593 |
+
phi_11 = torch.expm1(r1 * h)
|
594 |
+
phi_1 = torch.expm1(h)
|
595 |
+
|
596 |
+
if model_s is None:
|
597 |
+
model_s = self.model_fn(x, s)
|
598 |
+
x_s1 = (
|
599 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
600 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
601 |
+
)
|
602 |
+
model_s1 = self.model_fn(x_s1, s1)
|
603 |
+
if solver_type == 'dpm_solver':
|
604 |
+
x_t = (
|
605 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
606 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
607 |
+
- (0.5 / r1) * expand_dims(sigma_t * phi_1, dims) * (model_s1 - model_s)
|
608 |
+
)
|
609 |
+
elif solver_type == 'taylor':
|
610 |
+
x_t = (
|
611 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
612 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
613 |
+
- (1. / r1) * expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * (model_s1 - model_s)
|
614 |
+
)
|
615 |
+
if return_intermediate:
|
616 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1}
|
617 |
+
else:
|
618 |
+
return x_t
|
619 |
+
|
620 |
+
def singlestep_dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., model_s=None, model_s1=None, return_intermediate=False, solver_type='dpm_solver'):
|
621 |
+
"""
|
622 |
+
Singlestep solver DPM-Solver-3 from time `s` to time `t`.
|
623 |
+
|
624 |
+
Args:
|
625 |
+
x: A pytorch tensor. The initial value at time `s`.
|
626 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
627 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
628 |
+
r1: A `float`. The hyperparameter of the third-order solver.
|
629 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
630 |
+
model_s: A pytorch tensor. The model function evaluated at time `s`.
|
631 |
+
If `model_s` is None, we evaluate the model by `x` and `s`; otherwise we directly use it.
|
632 |
+
model_s1: A pytorch tensor. The model function evaluated at time `s1` (the intermediate time given by `r1`).
|
633 |
+
If `model_s1` is None, we evaluate the model at `s1`; otherwise we directly use it.
|
634 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
635 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
636 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
637 |
+
Returns:
|
638 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
639 |
+
"""
|
640 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
641 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
642 |
+
if r1 is None:
|
643 |
+
r1 = 1. / 3.
|
644 |
+
if r2 is None:
|
645 |
+
r2 = 2. / 3.
|
646 |
+
ns = self.noise_schedule
|
647 |
+
dims = x.dim()
|
648 |
+
lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t)
|
649 |
+
h = lambda_t - lambda_s
|
650 |
+
lambda_s1 = lambda_s + r1 * h
|
651 |
+
lambda_s2 = lambda_s + r2 * h
|
652 |
+
s1 = ns.inverse_lambda(lambda_s1)
|
653 |
+
s2 = ns.inverse_lambda(lambda_s2)
|
654 |
+
log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t)
|
655 |
+
sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t)
|
656 |
+
alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t)
|
657 |
+
|
658 |
+
if self.predict_x0:
|
659 |
+
phi_11 = torch.expm1(-r1 * h)
|
660 |
+
phi_12 = torch.expm1(-r2 * h)
|
661 |
+
phi_1 = torch.expm1(-h)
|
662 |
+
phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1.
|
663 |
+
phi_2 = phi_1 / h + 1.
|
664 |
+
phi_3 = phi_2 / h - 0.5
|
665 |
+
|
666 |
+
if model_s is None:
|
667 |
+
model_s = self.model_fn(x, s)
|
668 |
+
if model_s1 is None:
|
669 |
+
x_s1 = (
|
670 |
+
expand_dims(sigma_s1 / sigma_s, dims) * x
|
671 |
+
- expand_dims(alpha_s1 * phi_11, dims) * model_s
|
672 |
+
)
|
673 |
+
model_s1 = self.model_fn(x_s1, s1)
|
674 |
+
x_s2 = (
|
675 |
+
expand_dims(sigma_s2 / sigma_s, dims) * x
|
676 |
+
- expand_dims(alpha_s2 * phi_12, dims) * model_s
|
677 |
+
+ r2 / r1 * expand_dims(alpha_s2 * phi_22, dims) * (model_s1 - model_s)
|
678 |
+
)
|
679 |
+
model_s2 = self.model_fn(x_s2, s2)
|
680 |
+
if solver_type == 'dpm_solver':
|
681 |
+
x_t = (
|
682 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
683 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
684 |
+
+ (1. / r2) * expand_dims(alpha_t * phi_2, dims) * (model_s2 - model_s)
|
685 |
+
)
|
686 |
+
elif solver_type == 'taylor':
|
687 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
688 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
689 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
690 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
691 |
+
x_t = (
|
692 |
+
expand_dims(sigma_t / sigma_s, dims) * x
|
693 |
+
- expand_dims(alpha_t * phi_1, dims) * model_s
|
694 |
+
+ expand_dims(alpha_t * phi_2, dims) * D1
|
695 |
+
- expand_dims(alpha_t * phi_3, dims) * D2
|
696 |
+
)
|
697 |
+
else:
|
698 |
+
phi_11 = torch.expm1(r1 * h)
|
699 |
+
phi_12 = torch.expm1(r2 * h)
|
700 |
+
phi_1 = torch.expm1(h)
|
701 |
+
phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1.
|
702 |
+
phi_2 = phi_1 / h - 1.
|
703 |
+
phi_3 = phi_2 / h - 0.5
|
704 |
+
|
705 |
+
if model_s is None:
|
706 |
+
model_s = self.model_fn(x, s)
|
707 |
+
if model_s1 is None:
|
708 |
+
x_s1 = (
|
709 |
+
expand_dims(torch.exp(log_alpha_s1 - log_alpha_s), dims) * x
|
710 |
+
- expand_dims(sigma_s1 * phi_11, dims) * model_s
|
711 |
+
)
|
712 |
+
model_s1 = self.model_fn(x_s1, s1)
|
713 |
+
x_s2 = (
|
714 |
+
expand_dims(torch.exp(log_alpha_s2 - log_alpha_s), dims) * x
|
715 |
+
- expand_dims(sigma_s2 * phi_12, dims) * model_s
|
716 |
+
- r2 / r1 * expand_dims(sigma_s2 * phi_22, dims) * (model_s1 - model_s)
|
717 |
+
)
|
718 |
+
model_s2 = self.model_fn(x_s2, s2)
|
719 |
+
if solver_type == 'dpm_solver':
|
720 |
+
x_t = (
|
721 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
722 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
723 |
+
- (1. / r2) * expand_dims(sigma_t * phi_2, dims) * (model_s2 - model_s)
|
724 |
+
)
|
725 |
+
elif solver_type == 'taylor':
|
726 |
+
D1_0 = (1. / r1) * (model_s1 - model_s)
|
727 |
+
D1_1 = (1. / r2) * (model_s2 - model_s)
|
728 |
+
D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1)
|
729 |
+
D2 = 2. * (D1_1 - D1_0) / (r2 - r1)
|
730 |
+
x_t = (
|
731 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_s), dims) * x
|
732 |
+
- expand_dims(sigma_t * phi_1, dims) * model_s
|
733 |
+
- expand_dims(sigma_t * phi_2, dims) * D1
|
734 |
+
- expand_dims(sigma_t * phi_3, dims) * D2
|
735 |
+
)
|
736 |
+
|
737 |
+
if return_intermediate:
|
738 |
+
return x_t, {'model_s': model_s, 'model_s1': model_s1, 'model_s2': model_s2}
|
739 |
+
else:
|
740 |
+
return x_t
|
741 |
+
|
742 |
+
def multistep_dpm_solver_second_update(self, x, model_prev_list, t_prev_list, t, solver_type="dpm_solver"):
|
743 |
+
"""
|
744 |
+
Multistep solver DPM-Solver-2 from time `t_prev_list[-1]` to time `t`.
|
745 |
+
|
746 |
+
Args:
|
747 |
+
x: A pytorch tensor. The initial value at time `s`.
|
748 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
749 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
750 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
751 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
752 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
753 |
+
Returns:
|
754 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
755 |
+
"""
|
756 |
+
if solver_type not in ['dpm_solver', 'taylor']:
|
757 |
+
raise ValueError("'solver_type' must be either 'dpm_solver' or 'taylor', got {}".format(solver_type))
|
758 |
+
ns = self.noise_schedule
|
759 |
+
dims = x.dim()
|
760 |
+
model_prev_1, model_prev_0 = model_prev_list
|
761 |
+
t_prev_1, t_prev_0 = t_prev_list
|
762 |
+
lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
763 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
764 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
765 |
+
alpha_t = torch.exp(log_alpha_t)
|
766 |
+
|
767 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
768 |
+
h = lambda_t - lambda_prev_0
|
769 |
+
r0 = h_0 / h
|
770 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
771 |
+
if self.predict_x0:
|
772 |
+
if solver_type == 'dpm_solver':
|
773 |
+
x_t = (
|
774 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
775 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
776 |
+
- 0.5 * expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * D1_0
|
777 |
+
)
|
778 |
+
elif solver_type == 'taylor':
|
779 |
+
x_t = (
|
780 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
781 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
782 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1_0
|
783 |
+
)
|
784 |
+
else:
|
785 |
+
if solver_type == 'dpm_solver':
|
786 |
+
x_t = (
|
787 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
788 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
789 |
+
- 0.5 * expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * D1_0
|
790 |
+
)
|
791 |
+
elif solver_type == 'taylor':
|
792 |
+
x_t = (
|
793 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
794 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
795 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1_0
|
796 |
+
)
|
797 |
+
return x_t
|
798 |
+
|
799 |
+
def multistep_dpm_solver_third_update(self, x, model_prev_list, t_prev_list, t, solver_type='dpm_solver'):
|
800 |
+
"""
|
801 |
+
Multistep solver DPM-Solver-3 from time `t_prev_list[-1]` to time `t`.
|
802 |
+
|
803 |
+
Args:
|
804 |
+
x: A pytorch tensor. The initial value at time `s`.
|
805 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
806 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
807 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
808 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
809 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
810 |
+
Returns:
|
811 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
812 |
+
"""
|
813 |
+
ns = self.noise_schedule
|
814 |
+
dims = x.dim()
|
815 |
+
model_prev_2, model_prev_1, model_prev_0 = model_prev_list
|
816 |
+
t_prev_2, t_prev_1, t_prev_0 = t_prev_list
|
817 |
+
lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t)
|
818 |
+
log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t)
|
819 |
+
sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t)
|
820 |
+
alpha_t = torch.exp(log_alpha_t)
|
821 |
+
|
822 |
+
h_1 = lambda_prev_1 - lambda_prev_2
|
823 |
+
h_0 = lambda_prev_0 - lambda_prev_1
|
824 |
+
h = lambda_t - lambda_prev_0
|
825 |
+
r0, r1 = h_0 / h, h_1 / h
|
826 |
+
D1_0 = expand_dims(1. / r0, dims) * (model_prev_0 - model_prev_1)
|
827 |
+
D1_1 = expand_dims(1. / r1, dims) * (model_prev_1 - model_prev_2)
|
828 |
+
D1 = D1_0 + expand_dims(r0 / (r0 + r1), dims) * (D1_0 - D1_1)
|
829 |
+
D2 = expand_dims(1. / (r0 + r1), dims) * (D1_0 - D1_1)
|
830 |
+
if self.predict_x0:
|
831 |
+
x_t = (
|
832 |
+
expand_dims(sigma_t / sigma_prev_0, dims) * x
|
833 |
+
- expand_dims(alpha_t * (torch.exp(-h) - 1.), dims) * model_prev_0
|
834 |
+
+ expand_dims(alpha_t * ((torch.exp(-h) - 1.) / h + 1.), dims) * D1
|
835 |
+
- expand_dims(alpha_t * ((torch.exp(-h) - 1. + h) / h**2 - 0.5), dims) * D2
|
836 |
+
)
|
837 |
+
else:
|
838 |
+
x_t = (
|
839 |
+
expand_dims(torch.exp(log_alpha_t - log_alpha_prev_0), dims) * x
|
840 |
+
- expand_dims(sigma_t * (torch.exp(h) - 1.), dims) * model_prev_0
|
841 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1.) / h - 1.), dims) * D1
|
842 |
+
- expand_dims(sigma_t * ((torch.exp(h) - 1. - h) / h**2 - 0.5), dims) * D2
|
843 |
+
)
|
844 |
+
return x_t
|
845 |
+
|
846 |
+
def singlestep_dpm_solver_update(self, x, s, t, order, return_intermediate=False, solver_type='dpm_solver', r1=None, r2=None):
|
847 |
+
"""
|
848 |
+
Singlestep DPM-Solver with the order `order` from time `s` to time `t`.
|
849 |
+
|
850 |
+
Args:
|
851 |
+
x: A pytorch tensor. The initial value at time `s`.
|
852 |
+
s: A pytorch tensor. The starting time, with the shape (x.shape[0],).
|
853 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
854 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
855 |
+
return_intermediate: A `bool`. If true, also return the model value at time `s`, `s1` and `s2` (the intermediate times).
|
856 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
857 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
858 |
+
r1: A `float`. The hyperparameter of the second-order or third-order solver.
|
859 |
+
r2: A `float`. The hyperparameter of the third-order solver.
|
860 |
+
Returns:
|
861 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
862 |
+
"""
|
863 |
+
if order == 1:
|
864 |
+
return self.dpm_solver_first_update(x, s, t, return_intermediate=return_intermediate)
|
865 |
+
elif order == 2:
|
866 |
+
return self.singlestep_dpm_solver_second_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1)
|
867 |
+
elif order == 3:
|
868 |
+
return self.singlestep_dpm_solver_third_update(x, s, t, return_intermediate=return_intermediate, solver_type=solver_type, r1=r1, r2=r2)
|
869 |
+
else:
|
870 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
871 |
+
|
872 |
+
def multistep_dpm_solver_update(self, x, model_prev_list, t_prev_list, t, order, solver_type='dpm_solver'):
|
873 |
+
"""
|
874 |
+
Multistep DPM-Solver with the order `order` from time `t_prev_list[-1]` to time `t`.
|
875 |
+
|
876 |
+
Args:
|
877 |
+
x: A pytorch tensor. The initial value at time `s`.
|
878 |
+
model_prev_list: A list of pytorch tensor. The previous computed model values.
|
879 |
+
t_prev_list: A list of pytorch tensor. The previous times, each time has the shape (x.shape[0],)
|
880 |
+
t: A pytorch tensor. The ending time, with the shape (x.shape[0],).
|
881 |
+
order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3.
|
882 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
883 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
884 |
+
Returns:
|
885 |
+
x_t: A pytorch tensor. The approximated solution at time `t`.
|
886 |
+
"""
|
887 |
+
if order == 1:
|
888 |
+
return self.dpm_solver_first_update(x, t_prev_list[-1], t, model_s=model_prev_list[-1])
|
889 |
+
elif order == 2:
|
890 |
+
return self.multistep_dpm_solver_second_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
891 |
+
elif order == 3:
|
892 |
+
return self.multistep_dpm_solver_third_update(x, model_prev_list, t_prev_list, t, solver_type=solver_type)
|
893 |
+
else:
|
894 |
+
raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order))
|
895 |
+
|
896 |
+
def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'):
|
897 |
+
"""
|
898 |
+
The adaptive step size solver based on singlestep DPM-Solver.
|
899 |
+
|
900 |
+
Args:
|
901 |
+
x: A pytorch tensor. The initial value at time `t_T`.
|
902 |
+
order: A `int`. The (higher) order of the solver. We only support order == 2 or 3.
|
903 |
+
t_T: A `float`. The starting time of the sampling (default is T).
|
904 |
+
t_0: A `float`. The ending time of the sampling (default is epsilon).
|
905 |
+
h_init: A `float`. The initial step size (for logSNR).
|
906 |
+
atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1].
|
907 |
+
rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05.
|
908 |
+
theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1].
|
909 |
+
t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the
|
910 |
+
current time and `t_0` is less than `t_err`. The default setting is 1e-5.
|
911 |
+
solver_type: either 'dpm_solver' or 'taylor'. The type for the high-order solvers.
|
912 |
+
The type slightly impacts the performance. We recommend to use 'dpm_solver' type.
|
913 |
+
Returns:
|
914 |
+
x_0: A pytorch tensor. The approximated solution at time `t_0`.
|
915 |
+
|
916 |
+
[1] A. Jolicoeur-Martineau, K. Li, R. PichΓ©-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021.
|
917 |
+
"""
|
918 |
+
ns = self.noise_schedule
|
919 |
+
s = t_T * torch.ones((x.shape[0],)).to(x)
|
920 |
+
lambda_s = ns.marginal_lambda(s)
|
921 |
+
lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x))
|
922 |
+
h = h_init * torch.ones_like(s).to(x)
|
923 |
+
x_prev = x
|
924 |
+
nfe = 0
|
925 |
+
if order == 2:
|
926 |
+
r1 = 0.5
|
927 |
+
lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_intermediate=True)
|
928 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs)
|
929 |
+
elif order == 3:
|
930 |
+
r1, r2 = 1. / 3., 2. / 3.
|
931 |
+
lower_update = lambda x, s, t: self.singlestep_dpm_solver_second_update(x, s, t, r1=r1, return_intermediate=True, solver_type=solver_type)
|
932 |
+
higher_update = lambda x, s, t, **kwargs: self.singlestep_dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs)
|
933 |
+
else:
|
934 |
+
raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order))
|
935 |
+
while torch.abs((s - t_0)).mean() > t_err:
|
936 |
+
t = ns.inverse_lambda(lambda_s + h)
|
937 |
+
x_lower, lower_noise_kwargs = lower_update(x, s, t)
|
938 |
+
x_higher = higher_update(x, s, t, **lower_noise_kwargs)
|
939 |
+
delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev)))
|
940 |
+
norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True))
|
941 |
+
E = norm_fn((x_higher - x_lower) / delta).max()
|
942 |
+
if torch.all(E <= 1.):
|
943 |
+
x = x_higher
|
944 |
+
s = t
|
945 |
+
x_prev = x_lower
|
946 |
+
lambda_s = ns.marginal_lambda(s)
|
947 |
+
h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s)
|
948 |
+
nfe += order
|
949 |
+
print('adaptive solver nfe', nfe)
|
950 |
+
return x
|
951 |
+
|
952 |
+
def sample(self, x, steps=20, t_start=None, t_end=None, order=3, skip_type='time_uniform',
|
953 |
+
method='singlestep', denoise=False, solver_type='dpm_solver', atol=0.0078,
|
954 |
+
rtol=0.05,
|
955 |
+
):
|
956 |
+
"""
|
957 |
+
Compute the sample at time `t_end` by DPM-Solver, given the initial `x` at time `t_start`.
|
958 |
+
|
959 |
+
=====================================================
|
960 |
+
|
961 |
+
We support the following algorithms for both noise prediction model and data prediction model:
|
962 |
+
- 'singlestep':
|
963 |
+
Singlestep DPM-Solver (i.e. "DPM-Solver-fast" in the paper), which combines different orders of singlestep DPM-Solver.
|
964 |
+
We combine all the singlestep solvers with order <= `order` to use up all the function evaluations (steps).
|
965 |
+
The total number of function evaluations (NFE) == `steps`.
|
966 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
967 |
+
- If `order` == 1:
|
968 |
+
- Denote K = steps. We use K steps of DPM-Solver-1 (i.e. DDIM).
|
969 |
+
- If `order` == 2:
|
970 |
+
- Denote K = (steps // 2) + (steps % 2). We take K intermediate time steps for sampling.
|
971 |
+
- If steps % 2 == 0, we use K steps of singlestep DPM-Solver-2.
|
972 |
+
- If steps % 2 == 1, we use (K - 1) steps of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
973 |
+
- If `order` == 3:
|
974 |
+
- Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling.
|
975 |
+
- If steps % 3 == 0, we use (K - 2) steps of singlestep DPM-Solver-3, and 1 step of singlestep DPM-Solver-2 and 1 step of DPM-Solver-1.
|
976 |
+
- If steps % 3 == 1, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of DPM-Solver-1.
|
977 |
+
- If steps % 3 == 2, we use (K - 1) steps of singlestep DPM-Solver-3 and 1 step of singlestep DPM-Solver-2.
|
978 |
+
- 'multistep':
|
979 |
+
Multistep DPM-Solver with the order of `order`. The total number of function evaluations (NFE) == `steps`.
|
980 |
+
We initialize the first `order` values by lower order multistep solvers.
|
981 |
+
Given a fixed NFE == `steps`, the sampling procedure is:
|
982 |
+
Denote K = steps.
|
983 |
+
- If `order` == 1:
|
984 |
+
- We use K steps of DPM-Solver-1 (i.e. DDIM).
|
985 |
+
- If `order` == 2:
|
986 |
+
- We firstly use 1 step of DPM-Solver-1, then use (K - 1) step of multistep DPM-Solver-2.
|
987 |
+
- If `order` == 3:
|
988 |
+
- We firstly use 1 step of DPM-Solver-1, then 1 step of multistep DPM-Solver-2, then (K - 2) step of multistep DPM-Solver-3.
|
989 |
+
- 'singlestep_fixed':
|
990 |
+
Fixed order singlestep DPM-Solver (i.e. DPM-Solver-1 or singlestep DPM-Solver-2 or singlestep DPM-Solver-3).
|
991 |
+
We use singlestep DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE.
|
992 |
+
- 'adaptive':
|
993 |
+
Adaptive step size DPM-Solver (i.e. "DPM-Solver-12" and "DPM-Solver-23" in the paper).
|
994 |
+
We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`.
|
995 |
+
You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs
|
996 |
+
(NFE) and the sample quality.
|
997 |
+
- If `order` == 2, we use DPM-Solver-12 which combines DPM-Solver-1 and singlestep DPM-Solver-2.
|
998 |
+
- If `order` == 3, we use DPM-Solver-23 which combines singlestep DPM-Solver-2 and singlestep DPM-Solver-3.
|
999 |
+
|
1000 |
+
=====================================================
|
1001 |
+
|
1002 |
+
Some advices for choosing the algorithm:
|
1003 |
+
- For **unconditional sampling** or **guided sampling with small guidance scale** by DPMs:
|
1004 |
+
Use singlestep DPM-Solver ("DPM-Solver-fast" in the paper) with `order = 3`.
|
1005 |
+
e.g.
|
1006 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=False)
|
1007 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=3,
|
1008 |
+
skip_type='time_uniform', method='singlestep')
|
1009 |
+
- For **guided sampling with large guidance scale** by DPMs:
|
1010 |
+
Use multistep DPM-Solver with `predict_x0 = True` and `order = 2`.
|
1011 |
+
e.g.
|
1012 |
+
>>> dpm_solver = DPM_Solver(model_fn, noise_schedule, predict_x0=True)
|
1013 |
+
>>> x_sample = dpm_solver.sample(x, steps=steps, t_start=t_start, t_end=t_end, order=2,
|
1014 |
+
skip_type='time_uniform', method='multistep')
|
1015 |
+
|
1016 |
+
We support three types of `skip_type`:
|
1017 |
+
- 'logSNR': uniform logSNR for the time steps. **Recommended for low-resolutional images**
|
1018 |
+
- 'time_uniform': uniform time for the time steps. **Recommended for high-resolutional images**.
|
1019 |
+
- 'time_quadratic': quadratic time for the time steps.
|
1020 |
+
|
1021 |
+
=====================================================
|
1022 |
+
Args:
|
1023 |
+
x: A pytorch tensor. The initial value at time `t_start`
|
1024 |
+
e.g. if `t_start` == T, then `x` is a sample from the standard normal distribution.
|
1025 |
+
steps: A `int`. The total number of function evaluations (NFE).
|
1026 |
+
t_start: A `float`. The starting time of the sampling.
|
1027 |
+
If `T` is None, we use self.noise_schedule.T (default is 1.0).
|
1028 |
+
t_end: A `float`. The ending time of the sampling.
|
1029 |
+
If `t_end` is None, we use 1. / self.noise_schedule.total_N.
|
1030 |
+
e.g. if total_N == 1000, we have `t_end` == 1e-3.
|
1031 |
+
For discrete-time DPMs:
|
1032 |
+
- We recommend `t_end` == 1. / self.noise_schedule.total_N.
|
1033 |
+
For continuous-time DPMs:
|
1034 |
+
- We recommend `t_end` == 1e-3 when `steps` <= 15; and `t_end` == 1e-4 when `steps` > 15.
|
1035 |
+
order: A `int`. The order of DPM-Solver.
|
1036 |
+
skip_type: A `str`. The type for the spacing of the time steps. 'time_uniform' or 'logSNR' or 'time_quadratic'.
|
1037 |
+
method: A `str`. The method for sampling. 'singlestep' or 'multistep' or 'singlestep_fixed' or 'adaptive'.
|
1038 |
+
denoise: A `bool`. Whether to denoise at the final step. Default is False.
|
1039 |
+
If `denoise` is True, the total NFE is (`steps` + 1).
|
1040 |
+
solver_type: A `str`. The taylor expansion type for the solver. `dpm_solver` or `taylor`. We recommend `dpm_solver`.
|
1041 |
+
atol: A `float`. The absolute tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1042 |
+
rtol: A `float`. The relative tolerance of the adaptive step size solver. Valid when `method` == 'adaptive'.
|
1043 |
+
Returns:
|
1044 |
+
x_end: A pytorch tensor. The approximated solution at time `t_end`.
|
1045 |
+
|
1046 |
+
"""
|
1047 |
+
t_0 = 1. / self.noise_schedule.total_N if t_end is None else t_end
|
1048 |
+
t_T = self.noise_schedule.T if t_start is None else t_start
|
1049 |
+
device = x.device
|
1050 |
+
if method == 'adaptive':
|
1051 |
+
with torch.no_grad():
|
1052 |
+
x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type)
|
1053 |
+
elif method == 'multistep':
|
1054 |
+
assert steps >= order
|
1055 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1056 |
+
assert timesteps.shape[0] - 1 == steps
|
1057 |
+
with torch.no_grad():
|
1058 |
+
vec_t = timesteps[0].expand((x.shape[0]))
|
1059 |
+
model_prev_list = [self.model_fn(x, vec_t)]
|
1060 |
+
t_prev_list = [vec_t]
|
1061 |
+
# Init the first `order` values by lower order multistep DPM-Solver.
|
1062 |
+
for init_order in range(1, order):
|
1063 |
+
vec_t = timesteps[init_order].expand(x.shape[0])
|
1064 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type)
|
1065 |
+
model_prev_list.append(self.model_fn(x, vec_t))
|
1066 |
+
t_prev_list.append(vec_t)
|
1067 |
+
# Compute the remaining values by `order`-th order multistep DPM-Solver.
|
1068 |
+
for step in range(order, steps + 1):
|
1069 |
+
vec_t = timesteps[step].expand(x.shape[0])
|
1070 |
+
x = self.multistep_dpm_solver_update(x, model_prev_list, t_prev_list, vec_t, order, solver_type=solver_type)
|
1071 |
+
for i in range(order - 1):
|
1072 |
+
t_prev_list[i] = t_prev_list[i + 1]
|
1073 |
+
model_prev_list[i] = model_prev_list[i + 1]
|
1074 |
+
t_prev_list[-1] = vec_t
|
1075 |
+
# We do not need to evaluate the final model value.
|
1076 |
+
if step < steps:
|
1077 |
+
model_prev_list[-1] = self.model_fn(x, vec_t)
|
1078 |
+
elif method in ['singlestep', 'singlestep_fixed']:
|
1079 |
+
if method == 'singlestep':
|
1080 |
+
orders = self.get_orders_for_singlestep_solver(steps=steps, order=order)
|
1081 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
1082 |
+
elif method == 'singlestep_fixed':
|
1083 |
+
K = steps // order
|
1084 |
+
orders = [order,] * K
|
1085 |
+
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=(K * order), device=device)
|
1086 |
+
with torch.no_grad():
|
1087 |
+
i = 0
|
1088 |
+
for order in orders:
|
1089 |
+
vec_s, vec_t = timesteps[i].expand(x.shape[0]), timesteps[i + order].expand(x.shape[0])
|
1090 |
+
h = self.noise_schedule.marginal_lambda(timesteps[i + order]) - self.noise_schedule.marginal_lambda(timesteps[i])
|
1091 |
+
r1 = None if order <= 1 else (self.noise_schedule.marginal_lambda(timesteps[i + 1]) - self.noise_schedule.marginal_lambda(timesteps[i])) / h
|
1092 |
+
r2 = None if order <= 2 else (self.noise_schedule.marginal_lambda(timesteps[i + 2]) - self.noise_schedule.marginal_lambda(timesteps[i])) / h
|
1093 |
+
x = self.singlestep_dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2)
|
1094 |
+
i += order
|
1095 |
+
if denoise:
|
1096 |
+
x = self.denoise_fn(x, torch.ones((x.shape[0],)).to(device) * t_0)
|
1097 |
+
return x
|
1098 |
+
|
1099 |
+
|
1100 |
+
|
1101 |
+
#############################################################
|
1102 |
+
# other utility functions
|
1103 |
+
#############################################################
|
1104 |
+
|
1105 |
+
def interpolate_fn(x, xp, yp):
|
1106 |
+
"""
|
1107 |
+
A piecewise linear function y = f(x), using xp and yp as keypoints.
|
1108 |
+
We implement f(x) in a differentiable way (i.e. applicable for autograd).
|
1109 |
+
The function f(x) is well-defined for all x-axis. (For x beyond the bounds of xp, we use the outmost points of xp to define the linear function.)
|
1110 |
+
|
1111 |
+
Args:
|
1112 |
+
x: PyTorch tensor with shape [N, C], where N is the batch size, C is the number of channels (we use C = 1 for DPM-Solver).
|
1113 |
+
xp: PyTorch tensor with shape [C, K], where K is the number of keypoints.
|
1114 |
+
yp: PyTorch tensor with shape [C, K].
|
1115 |
+
Returns:
|
1116 |
+
The function values f(x), with shape [N, C].
|
1117 |
+
"""
|
1118 |
+
N, K = x.shape[0], xp.shape[1]
|
1119 |
+
all_x = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((N, 1, 1))], dim=2)
|
1120 |
+
sorted_all_x, x_indices = torch.sort(all_x, dim=2)
|
1121 |
+
x_idx = torch.argmin(x_indices, dim=2)
|
1122 |
+
cand_start_idx = x_idx - 1
|
1123 |
+
start_idx = torch.where(
|
1124 |
+
torch.eq(x_idx, 0),
|
1125 |
+
torch.tensor(1, device=x.device),
|
1126 |
+
torch.where(
|
1127 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1128 |
+
),
|
1129 |
+
)
|
1130 |
+
end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1)
|
1131 |
+
start_x = torch.gather(sorted_all_x, dim=2, index=start_idx.unsqueeze(2)).squeeze(2)
|
1132 |
+
end_x = torch.gather(sorted_all_x, dim=2, index=end_idx.unsqueeze(2)).squeeze(2)
|
1133 |
+
start_idx2 = torch.where(
|
1134 |
+
torch.eq(x_idx, 0),
|
1135 |
+
torch.tensor(0, device=x.device),
|
1136 |
+
torch.where(
|
1137 |
+
torch.eq(x_idx, K), torch.tensor(K - 2, device=x.device), cand_start_idx,
|
1138 |
+
),
|
1139 |
+
)
|
1140 |
+
y_positions_expanded = yp.unsqueeze(0).expand(N, -1, -1)
|
1141 |
+
start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2)
|
1142 |
+
end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2)
|
1143 |
+
cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x)
|
1144 |
+
return cand
|
1145 |
+
|
1146 |
+
|
1147 |
+
def expand_dims(v, dims):
|
1148 |
+
"""
|
1149 |
+
Expand the tensor `v` to the dim `dims`.
|
1150 |
+
|
1151 |
+
Args:
|
1152 |
+
`v`: a PyTorch tensor with shape [N].
|
1153 |
+
`dim`: a `int`.
|
1154 |
+
Returns:
|
1155 |
+
a PyTorch tensor with shape [N, 1, 1, ..., 1] and the total dimension is `dims`.
|
1156 |
+
"""
|
1157 |
+
return v[(...,) + (None,)*(dims - 1)]
|
ldm/models/diffusion/dpm_solver/sampler.py
ADDED
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""SAMPLING ONLY."""
|
2 |
+
|
3 |
+
import torch
|
4 |
+
|
5 |
+
from .solver import NoiseScheduleVP, model_wrapper, DPM_Solver
|
6 |
+
|
7 |
+
|
8 |
+
class DPMSolverSampler(object):
|
9 |
+
def __init__(self, model, **kwargs):
|
10 |
+
super().__init__()
|
11 |
+
self.model = model
|
12 |
+
to_torch = lambda x: x.clone().detach().to(torch.float32).to(model.device)
|
13 |
+
self.register_buffer('alphas_cumprod', to_torch(model.alphas_cumprod))
|
14 |
+
|
15 |
+
def register_buffer(self, name, attr):
|
16 |
+
if type(attr) == torch.Tensor:
|
17 |
+
if attr.device != torch.device("cuda"):
|
18 |
+
attr = attr.to(torch.device("cuda"))
|
19 |
+
setattr(self, name, attr)
|
20 |
+
|
21 |
+
@torch.no_grad()
|
22 |
+
def sample(self,
|
23 |
+
S,
|
24 |
+
batch_size,
|
25 |
+
shape,
|
26 |
+
conditioning=None,
|
27 |
+
callback=None,
|
28 |
+
normals_sequence=None,
|
29 |
+
img_callback=None,
|
30 |
+
quantize_x0=False,
|
31 |
+
eta=0.,
|
32 |
+
mask=None,
|
33 |
+
x0=None,
|
34 |
+
temperature=1.,
|
35 |
+
noise_dropout=0.,
|
36 |
+
score_corrector=None,
|
37 |
+
corrector_kwargs=None,
|
38 |
+
verbose=True,
|
39 |
+
x_T=None,
|
40 |
+
log_every_t=100,
|
41 |
+
unconditional_guidance_scale=1.,
|
42 |
+
unconditional_conditioning=None,
|
43 |
+
# this has to come in the same format as the conditioning, # e.g. as encoded tokens, ...
|
44 |
+
**kwargs
|
45 |
+
):
|
46 |
+
if conditioning is not None:
|
47 |
+
if isinstance(conditioning, dict):
|
48 |
+
cbs = conditioning[list(conditioning.keys())[0]].shape[0]
|
49 |
+
if cbs != batch_size:
|
50 |
+
print(f"Warning: Got {cbs} conditionings but batch-size is {batch_size}")
|
51 |
+
else:
|
52 |
+
if conditioning.shape[0] != batch_size:
|
53 |
+
print(f"Warning: Got {conditioning.shape[0]} conditionings but batch-size is {batch_size}")
|
54 |
+
|
55 |
+
# sampling
|
56 |
+
C, H, W = shape
|
57 |
+
size = (batch_size, C, H, W)
|
58 |
+
|
59 |
+
# print(f'Data shape for DPM-Solver sampling is {size}, sampling steps {S}')
|
60 |
+
|
61 |
+
device = self.model.betas.device
|
62 |
+
if x_T is None:
|
63 |
+
img = torch.randn(size, device=device)
|
64 |
+
else:
|
65 |
+
img = x_T
|
66 |
+
|
67 |
+
ns = NoiseScheduleVP('discrete', alphas_cumprod=self.alphas_cumprod)
|
68 |
+
|
69 |
+
model_fn = model_wrapper(
|
70 |
+
lambda x, t, c: self.model.apply_model(x, t, c),
|
71 |
+
ns,
|
72 |
+
model_type="noise",
|
73 |
+
guidance_type="classifier-free",
|
74 |
+
condition=conditioning,
|
75 |
+
unconditional_condition=unconditional_conditioning,
|
76 |
+
guidance_scale=unconditional_guidance_scale,
|
77 |
+
)
|
78 |
+
|
79 |
+
dpm_solver = DPM_Solver(model_fn, ns, predict_x0=True, thresholding=False)
|
80 |
+
x = dpm_solver.sample(img, steps=S, skip_type="time_uniform", method="multistep", order=2)
|
81 |
+
|
82 |
+
return x.to(device), None
|
scripts/txt2img.py
CHANGED
@@ -17,6 +17,7 @@ from contextlib import contextmanager, nullcontext
|
|
17 |
from ldm.util import instantiate_from_config
|
18 |
from ldm.models.diffusion.ddim import DDIMSampler
|
19 |
from ldm.models.diffusion.plms import PLMSSampler
|
|
|
20 |
|
21 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
22 |
from transformers import AutoFeatureExtractor
|
@@ -132,6 +133,11 @@ def main():
|
|
132 |
action='store_true',
|
133 |
help="use plms sampling",
|
134 |
)
|
|
|
|
|
|
|
|
|
|
|
135 |
parser.add_argument(
|
136 |
"--laion400m",
|
137 |
action='store_true',
|
@@ -242,7 +248,9 @@ def main():
|
|
242 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
243 |
model = model.to(device)
|
244 |
|
245 |
-
if opt.
|
|
|
|
|
246 |
sampler = PLMSSampler(model)
|
247 |
else:
|
248 |
sampler = DDIMSampler(model)
|
|
|
17 |
from ldm.util import instantiate_from_config
|
18 |
from ldm.models.diffusion.ddim import DDIMSampler
|
19 |
from ldm.models.diffusion.plms import PLMSSampler
|
20 |
+
from ldm.models.diffusion.dpm_solver import DPMSolverSampler
|
21 |
|
22 |
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
23 |
from transformers import AutoFeatureExtractor
|
|
|
133 |
action='store_true',
|
134 |
help="use plms sampling",
|
135 |
)
|
136 |
+
parser.add_argument(
|
137 |
+
"--dpm_solver",
|
138 |
+
action='store_true',
|
139 |
+
help="use dpm_solver sampling",
|
140 |
+
)
|
141 |
parser.add_argument(
|
142 |
"--laion400m",
|
143 |
action='store_true',
|
|
|
248 |
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
249 |
model = model.to(device)
|
250 |
|
251 |
+
if opt.dpm_solver:
|
252 |
+
sampler = DPMSolverSampler(model)
|
253 |
+
elif opt.plms:
|
254 |
sampler = PLMSSampler(model)
|
255 |
else:
|
256 |
sampler = DDIMSampler(model)
|