|
import gradio as gr |
|
import numpy as np |
|
import random |
|
from PIL import Image |
|
import torch |
|
from diffusers import ControlNetModel, UniPCMultistepScheduler |
|
from hico_pipeline import StableDiffusionControlNetMultiLayoutPipeline |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
controlnet = ControlNetModel.from_pretrained("qihoo360/HiCo_T2I", torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetMultiLayoutPipeline.from_pretrained( |
|
"krnl/realisticVisionV51_v51VAE", controlnet=[controlnet], torch_dtype=torch.float16 |
|
) |
|
pipe = pipe.to(device) |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
|
|
|
|
def generate_dummy_data(): |
|
|
|
img_width, img_height = 512, 512 |
|
r_image = np.zeros((img_height, img_width, 3), dtype=np.uint8) |
|
|
|
|
|
num_objects = random.randint(1, 5) |
|
r_obj_bbox = [] |
|
r_obj_class = ["Object"] |
|
list_cond_image = [] |
|
|
|
for _ in range(num_objects): |
|
x1, y1 = random.randint(0, img_width // 2), random.randint(0, img_height // 2) |
|
x2, y2 = random.randint(x1, img_width), random.randint(y1, img_height) |
|
r_obj_bbox.append([x1, y1, x2, y2]) |
|
cond_image = np.zeros_like(r_image, dtype=np.uint8) |
|
cond_image[y1:y2, x1:x2] = 255 |
|
list_cond_image.append(cond_image) |
|
|
|
r_obj_bbox.insert(0, [0, 0, img_width, img_height]) |
|
r_obj_class.insert(0, "Background") |
|
list_cond_image.insert(0, np.zeros_like(r_image, dtype=np.uint8)) |
|
|
|
obj_cond_image = np.stack(list_cond_image, axis=0) |
|
list_cond_image_pil = [Image.fromarray(img).convert('RGB') for img in list_cond_image] |
|
|
|
return r_obj_class, r_obj_bbox, list_cond_image_pil, obj_cond_image |
|
|
|
|
|
def infer( |
|
prompt, guidance_scale, num_inference_steps, randomize_seed, seed=None |
|
): |
|
|
|
r_obj_class, r_obj_bbox, list_cond_image_pil, _ = generate_dummy_data() |
|
if randomize_seed or seed is None: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.manual_seed(seed) |
|
|
|
|
|
image = pipe( |
|
prompt=prompt, |
|
layo_prompt=r_obj_class, |
|
guess_mode=False, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
image=list_cond_image_pil, |
|
fuse_type="avg", |
|
width=512, |
|
height=512 |
|
).images[0] |
|
|
|
return image, seed |
|
|
|
examples = [ |
|
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", |
|
"An astronaut riding a green horse", |
|
"A delicious ceviche cheesecake slice", |
|
] |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 640px; |
|
} |
|
""" |
|
|
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(" # Text-to-Image Gradio Template") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0, variant="primary") |
|
|
|
result = gr.Image(label="Result", show_label=False) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=10.0, |
|
step=0.1, |
|
value=7.5, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=50, |
|
step=1, |
|
value=50, |
|
) |
|
|
|
gr.Examples(examples=examples, inputs=[prompt]) |
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[ |
|
prompt, |
|
guidance_scale, |
|
num_inference_steps, |
|
randomize_seed, |
|
seed, |
|
], |
|
outputs=[result, seed], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|