|
import os |
|
from glob import glob |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
import torch |
|
from torchvision import transforms |
|
from transformers import AutoModelForImageSegmentation |
|
import gradio as gr |
|
import spaces |
|
from gradio_imageslider import ImageSlider |
|
|
|
torch.set_float32_matmul_precision('high') |
|
torch.jit.script = lambda f: f |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
|
|
def array_to_pil_image(image, size=(1024, 1024)): |
|
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR) |
|
image = Image.fromarray(image).convert('RGB') |
|
return image |
|
|
|
|
|
class ImagePreprocessor(): |
|
def __init__(self, resolution=(1024, 1024)) -> None: |
|
self.transform_image = transforms.Compose([ |
|
|
|
transforms.ToTensor(), |
|
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), |
|
]) |
|
|
|
def proc(self, image): |
|
image = self.transform_image(image) |
|
return image |
|
|
|
|
|
usage_to_weights_file = { |
|
'General': 'BiRefNet', |
|
'Portrait': 'BiRefNet-portrait', |
|
'DIS': 'BiRefNet-DIS5K', |
|
'HRSOD': 'BiRefNet-HRSOD', |
|
'COD': 'BiRefNet-COD', |
|
'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs' |
|
} |
|
|
|
from transformers import AutoModelForImageSegmentation |
|
weights_path = 'General' |
|
birefnet = AutoModelForImageSegmentation.from_pretrained('/'.join(('zhengpeng7', usage_to_weights_file[weights_path])), trust_remote_code=True) |
|
birefnet.to(device) |
|
birefnet.eval() |
|
birefnet.weights_path = weights_path |
|
|
|
|
|
@spaces.GPU |
|
def predict(image, resolution, weights_file): |
|
global birefnet |
|
if birefnet.weights_path != weights_file: |
|
|
|
_weights_file = '/'.join(('zhengpeng7', usage_to_weights_file[weights_file] if weights_file is not None else 'BiRefNet')) |
|
print('Change weights to:', _weights_file) |
|
print('\t', weights_file, birefnet.weights_path) |
|
birefnet = birefnet.from_pretrained(_weights_file) |
|
birefnet.to(device) |
|
birefnet.eval() |
|
birefnet.weights_path = weights_file |
|
|
|
resolution = f"{image.shape[1]}x{image.shape[0]}" if resolution == '' else resolution |
|
|
|
resolution = [int(int(reso)//32*32) for reso in resolution.strip().split('x')] |
|
images = [image] |
|
image_shapes = [image.shape[:2] for image in images] |
|
images = [array_to_pil_image(image, resolution) for image in images] |
|
|
|
image_preprocessor = ImagePreprocessor(resolution=resolution) |
|
images_proc = [] |
|
for image in images: |
|
images_proc.append(image_preprocessor.proc(image)) |
|
images_proc = torch.cat([image_proc.unsqueeze(0) for image_proc in images_proc]) |
|
|
|
with torch.no_grad(): |
|
scaled_preds_tensor = birefnet(images_proc.to(device))[-1].sigmoid() |
|
preds = [] |
|
for image_shape, pred_tensor in zip(image_shapes, scaled_preds_tensor): |
|
if device == 'cuda': |
|
pred_tensor = pred_tensor.cpu() |
|
preds.append(torch.nn.functional.interpolate(pred_tensor.unsqueeze(0), size=image_shape, mode='bilinear', align_corners=True).squeeze().numpy()) |
|
image_preds = [] |
|
for image, pred in zip(images, preds): |
|
image = image.resize(pred.shape[::-1]) |
|
pred = np.repeat(np.expand_dims(pred, axis=-1), 3, axis=-1) |
|
image_preds.append((pred * image).astype(np.uint8)) |
|
|
|
return image, image_preds[0] |
|
|
|
|
|
examples = [[_] for _ in glob('examples/*')][:] |
|
|
|
|
|
for idx_example, example in enumerate(examples): |
|
examples[idx_example].append('1024x1024') |
|
examples.append(examples[-1].copy()) |
|
examples[-1][1] = '512x512' |
|
|
|
demo = gr.Interface( |
|
fn=predict, |
|
inputs=[ |
|
'image', |
|
gr.Textbox(lines=1, placeholder="Type the resolution (`WxH`) you want, e.g., `512x512`. Higher resolutions can be much slower for inference.", label="Resolution"), |
|
gr.Radio(list(usage_to_weights_file.keys()), label="Weights", info="Choose the weights you want.") |
|
], |
|
outputs=ImageSlider(), |
|
examples=examples, |
|
title='Online demo for `Bilateral Reference for High-Resolution Dichotomous Image Segmentation`', |
|
description=('Upload a picture, our model will extract a highly accurate segmentation of the subject in it. :)' |
|
'\nThe resolution used in our training was `1024x1024`, which is thus the suggested resolution to obtain good results!\n Ours codes can be found at https://github.com/ZhengPeng7/BiRefNet.\n We also maintain the HF model of BiRefNet at https://huggingface.co/ZhengPeng7/birefnet for easier access.') |
|
) |
|
demo.launch(debug=True) |
|
|