Spaces:
Sleeping
Sleeping
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
class UNetBlock(nn.Module): | |
def __init__(self, in_channels, out_channels, down=True, bn=True, dropout=False): | |
super(UNetBlock, self).__init__() | |
self.conv = nn.Conv2d(in_channels, out_channels, 4, 2, 1, bias=False) if down \ | |
else nn.ConvTranspose2d(in_channels, out_channels, 4, 2, 1, bias=False) | |
self.bn = nn.BatchNorm2d(out_channels) if bn else None | |
self.dropout = nn.Dropout(0.5) if dropout else None | |
self.down = down | |
def forward(self, x): | |
x = self.conv(x) | |
if self.bn: | |
x = self.bn(x) | |
if self.dropout: | |
x = self.dropout(x) | |
return F.relu(x) if self.down else F.relu(x, inplace=True) | |
class Generator(nn.Module): | |
def __init__(self): | |
super(Generator, self).__init__() | |
self.down1 = UNetBlock(1, 64, bn=False) # Input is L channel (1 channel) | |
self.down2 = UNetBlock(64, 128) | |
self.down3 = UNetBlock(128, 256) | |
self.down4 = UNetBlock(256, 512) | |
self.down5 = UNetBlock(512, 512) | |
self.down6 = UNetBlock(512, 512) | |
self.down7 = UNetBlock(512, 512) | |
self.down8 = UNetBlock(512, 512, bn=False) | |
self.up1 = UNetBlock(512, 512, down=False, dropout=True) | |
self.up2 = UNetBlock(1024, 512, down=False, dropout=True) | |
self.up3 = UNetBlock(1024, 512, down=False, dropout=True) | |
self.up4 = UNetBlock(1024, 512, down=False) | |
self.up5 = UNetBlock(1024, 256, down=False) | |
self.up6 = UNetBlock(512, 128, down=False) | |
self.up7 = UNetBlock(256, 64, down=False) | |
self.up8 = nn.ConvTranspose2d(128, 2, 4, 2, 1) # Output is AB channels (2 channels) | |
def forward(self, x): | |
d1 = self.down1(x) | |
d2 = self.down2(d1) | |
d3 = self.down3(d2) | |
d4 = self.down4(d3) | |
d5 = self.down5(d4) | |
d6 = self.down6(d5) | |
d7 = self.down7(d6) | |
d8 = self.down8(d7) | |
u1 = self.up1(d8) | |
u2 = self.up2(torch.cat([u1, d7], 1)) | |
u3 = self.up3(torch.cat([u2, d6], 1)) | |
u4 = self.up4(torch.cat([u3, d5], 1)) | |
u5 = self.up5(torch.cat([u4, d4], 1)) | |
u6 = self.up6(torch.cat([u5, d3], 1)) | |
u7 = self.up7(torch.cat([u6, d2], 1)) | |
return torch.tanh(self.up8(torch.cat([u7, d1], 1))) | |
class Discriminator(nn.Module): | |
def __init__(self): | |
super(Discriminator, self).__init__() | |
self.model = nn.Sequential( | |
nn.Conv2d(3, 64, 4, stride=2, padding=1), # Input is L+AB (3 channels) | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(64, 128, 4, stride=2, padding=1), | |
nn.BatchNorm2d(128), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(128, 256, 4, stride=2, padding=1), | |
nn.BatchNorm2d(256), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(256, 512, 4, padding=1), | |
nn.BatchNorm2d(512), | |
nn.LeakyReLU(0.2, inplace=True), | |
nn.Conv2d(512, 1, 4, padding=1) | |
) | |
def forward(self, x): | |
return self.model(x) | |
def init_weights(model): | |
classname = model.__class__.__name__ | |
if classname.find('Conv') != -1: | |
nn.init.normal_(model.weight.data, 0.0, 0.02) | |
elif classname.find('BatchNorm') != -1: | |
nn.init.normal_(model.weight.data, 1.0, 0.02) | |
nn.init.constant_(model.bias.data, 0) | |
def create_models(): | |
try: | |
print("Creating Generator...") | |
generator = Generator() | |
generator.apply(init_weights) | |
print("Generator created successfully.") | |
print("Creating Discriminator...") | |
discriminator = Discriminator() | |
discriminator.apply(init_weights) | |
print("Discriminator created successfully.") | |
return generator, discriminator | |
except Exception as e: | |
print(f"Error in creating models: {str(e)}") | |
return None, None | |
def test_models(): | |
print("Testing models...") | |
try: | |
generator, discriminator = create_models() | |
if generator is None or discriminator is None: | |
raise Exception("Model creation failed") | |
test_input_g = torch.randn(1, 1, 256, 256) | |
test_output_g = generator(test_input_g) | |
if test_output_g.shape != torch.Size([1, 2, 256, 256]): | |
raise Exception(f"Unexpected generator output shape: {test_output_g.shape}") | |
test_input_d = torch.randn(1, 3, 256, 256) | |
test_output_d = discriminator(test_input_d) | |
if test_output_d.shape != torch.Size([1, 1, 30, 30]): | |
raise Exception(f"Unexpected discriminator output shape: {test_output_d.shape}") | |
print("Model test passed.") | |
return True | |
except Exception as e: | |
print(f"Model test failed: {str(e)}") | |
return False | |
if __name__ == "__main__": | |
try: | |
print("Initializing models...") | |
generator, discriminator = create_models() | |
if generator is None or discriminator is None: | |
raise Exception("Failed to create models") | |
if not test_models(): | |
raise Exception("Model testing failed") | |
print("Model creation and testing completed successfully.") | |
except Exception as e: | |
print(f"Critical error in main execution: {str(e)}") |