Spaces:
Sleeping
Sleeping
# coding=utf-8 | |
# coding=utf-8 | |
# Copyright 2023 The HuggingFace Team. All rights reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
from typing import Dict | |
import torch | |
from transformers import AutoTokenizer, BitsAndBytesConfig, PreTrainedTokenizer | |
from accelerate import Accelerator | |
from huggingface_hub import list_repo_files | |
from peft import LoraConfig, PeftConfig | |
from .configs import DataArguments, ModelArguments | |
from .data import DEFAULT_CHAT_TEMPLATE | |
def get_current_device() -> int: | |
"""Get the current device. For GPU we return the local process index to enable multiple GPU training.""" | |
return Accelerator().local_process_index if torch.cuda.is_available() else "cpu" | |
def get_kbit_device_map() -> Dict[str, int] | None: | |
"""Useful for running inference with quantized models by setting `device_map=get_peft_device_map()`""" | |
return {"": get_current_device()} if torch.cuda.is_available() else None | |
def get_quantization_config(model_args) -> BitsAndBytesConfig | None: | |
if model_args.load_in_4bit: | |
quantization_config = BitsAndBytesConfig( | |
load_in_4bit=True, | |
bnb_4bit_compute_dtype=torch.float16, # For consistency with model weights, we use the same value as `torch_dtype` which is float16 for PEFT models | |
bnb_4bit_quant_type=model_args.bnb_4bit_quant_type, | |
bnb_4bit_use_double_quant=model_args.use_bnb_nested_quant, | |
) | |
elif model_args.load_in_8bit: | |
quantization_config = BitsAndBytesConfig( | |
load_in_8bit=True, | |
) | |
else: | |
quantization_config = None | |
return quantization_config | |
def get_tokenizer(model_args: ModelArguments, data_args: DataArguments) -> PreTrainedTokenizer: | |
"""Get the tokenizer for the model.""" | |
tokenizer = AutoTokenizer.from_pretrained( | |
model_args.model_name_or_path, | |
revision=model_args.model_revision, | |
) | |
if tokenizer.pad_token_id is None: | |
tokenizer.pad_token_id = tokenizer.eos_token_id | |
if data_args.truncation_side is not None: | |
tokenizer.truncation_side = data_args.truncation_side | |
# Set reasonable default for models without max length | |
if tokenizer.model_max_length > 100_000: | |
tokenizer.model_max_length = 2048 | |
if data_args.chat_template is not None: | |
tokenizer.chat_template = data_args.chat_template | |
elif tokenizer.chat_template is None: | |
tokenizer.chat_template = DEFAULT_CHAT_TEMPLATE | |
return tokenizer | |
def get_peft_config(model_args: ModelArguments) -> PeftConfig | None: | |
if model_args.use_peft is False: | |
return None | |
peft_config = LoraConfig( | |
r=model_args.lora_r, | |
lora_alpha=model_args.lora_alpha, | |
lora_dropout=model_args.lora_dropout, | |
bias="none", | |
task_type="CAUSAL_LM", | |
target_modules=model_args.lora_target_modules, | |
modules_to_save=model_args.lora_modules_to_save, | |
) | |
return peft_config | |
def is_adapter_model(model_name_or_path: str, revision: str = "main") -> bool: | |
repo_files = list_repo_files(model_name_or_path, revision=revision) | |
return "adapter_model.safetensors" in repo_files or "adapter_model.bin" in repo_files | |