Spaces:
Runtime error
Runtime error
Update app.py
Browse filesT5 task 3 English-to-German translation
app.py
CHANGED
@@ -222,7 +222,7 @@
|
|
222 |
# grad.Interface(generate, inputs=txt, outputs=out).launch()
|
223 |
|
224 |
#-----------------------------------------------------------------------------------
|
225 |
-
# 10. Text-to-Text Generation using the T5 model -
|
226 |
|
227 |
# A transformer-based architecture that takes a text-to-text approach is referred to as T5, which stands for Text-to-Text Transfer Transformer.
|
228 |
|
@@ -247,35 +247,55 @@
|
|
247 |
|
248 |
# context=grad.Textbox(lines=10, label="English", placeholder="Context")
|
249 |
# ans=grad.Textbox(lines=1, label="Answer")
|
250 |
-
# out=grad.Textbox(lines=1, label="
|
251 |
|
252 |
# grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
|
253 |
|
254 |
#-----------------------------------------------------------------------------------
|
255 |
-
# 11. Text-to-Text Generation using the T5 model -
|
256 |
|
257 |
-
from transformers import AutoTokenizer, AutoModelWithLMHead
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
258 |
import gradio as grad
|
259 |
|
260 |
-
text2text_tkn
|
261 |
-
mdl =
|
262 |
-
|
263 |
-
def text2text_summary(para):
|
264 |
-
initial_txt = para.strip().replace("\n","")
|
265 |
-
tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
|
266 |
-
tkn_ids = mdl.generate(
|
267 |
-
tkn_text,
|
268 |
-
max_length=250,
|
269 |
-
num_beams=5,
|
270 |
-
repetition_penalty=2.5,
|
271 |
-
early_stopping=True
|
272 |
-
)
|
273 |
-
response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
|
274 |
-
return response
|
275 |
|
276 |
-
|
277 |
-
|
|
|
|
|
|
|
|
|
278 |
|
279 |
-
grad.
|
|
|
280 |
|
|
|
281 |
|
|
|
222 |
# grad.Interface(generate, inputs=txt, outputs=out).launch()
|
223 |
|
224 |
#-----------------------------------------------------------------------------------
|
225 |
+
# 10. Text-to-Text Generation using the T5 model - Task 1 generates a question given some context.
|
226 |
|
227 |
# A transformer-based architecture that takes a text-to-text approach is referred to as T5, which stands for Text-to-Text Transfer Transformer.
|
228 |
|
|
|
247 |
|
248 |
# context=grad.Textbox(lines=10, label="English", placeholder="Context")
|
249 |
# ans=grad.Textbox(lines=1, label="Answer")
|
250 |
+
# out=grad.Textbox(lines=1, label="Generated Question")
|
251 |
|
252 |
# grad.Interface(text2text, inputs=[context,ans], outputs=out).launch()
|
253 |
|
254 |
#-----------------------------------------------------------------------------------
|
255 |
+
# 11. Text-to-Text Generation using the T5 model - Task 2 summarizes a paragraph of text.
|
256 |
|
257 |
+
# from transformers import AutoTokenizer, AutoModelWithLMHead
|
258 |
+
# import gradio as grad
|
259 |
+
|
260 |
+
# text2text_tkn = AutoTokenizer.from_pretrained("deep-learning-analytics/wikihow-t5-small")
|
261 |
+
# mdl = AutoModelWithLMHead.from_pretrained("deep-learning-analytics/wikihow-t5-small")
|
262 |
+
|
263 |
+
# def text2text_summary(para):
|
264 |
+
# initial_txt = para.strip().replace("\n","")
|
265 |
+
# tkn_text = text2text_tkn.encode(initial_txt, return_tensors="pt")
|
266 |
+
# tkn_ids = mdl.generate(
|
267 |
+
# tkn_text,
|
268 |
+
# max_length=250,
|
269 |
+
# num_beams=5,
|
270 |
+
# repetition_penalty=2.5,
|
271 |
+
# early_stopping=True
|
272 |
+
# )
|
273 |
+
# response = text2text_tkn.decode(tkn_ids[0], skip_special_tokens=True)
|
274 |
+
# return response
|
275 |
+
|
276 |
+
# para=grad.Textbox(lines=10, label="Paragraph", placeholder="Copy paragraph")
|
277 |
+
# out=grad.Textbox(lines=1, label="Summary")
|
278 |
+
|
279 |
+
# grad.Interface(text2text_summary, inputs=para, outputs=out).launch()
|
280 |
+
|
281 |
+
#-----------------------------------------------------------------------------------
|
282 |
+
# 12. Text-to-Text Generation using the T5 model - Task 3 English-to-German translation.
|
283 |
+
|
284 |
+
from transformers import T5ForConditionalGeneration, T5Tokenizer
|
285 |
import gradio as grad
|
286 |
|
287 |
+
text2text_tkn= T5Tokenizer.from_pretrained("t5-small")
|
288 |
+
mdl = T5ForConditionalGeneration.from_pretrained("t5-small")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
289 |
|
290 |
+
def text2text_translation(text):
|
291 |
+
inp = "translate English to German:: "+text
|
292 |
+
enc = text2text_tkn(inp, return_tensors="pt")
|
293 |
+
tokens = mdl.generate(**enc)
|
294 |
+
response=text2text_tkn.batch_decode(tokens)
|
295 |
+
return response
|
296 |
|
297 |
+
para=grad.Textbox(lines=1, label="English Text", placeholder="Text in English")
|
298 |
+
out=grad.Textbox(lines=1, label="German Translation")
|
299 |
|
300 |
+
grad.Interface(text2text_translation, inputs=para, outputs=out).launch()
|
301 |
|