innofinderai / hf_mixtral_agent.py
Asaad Almutareb
added get_arxiv_paper to the 2nd tool set
3619e81
raw
history blame
4.9 kB
# HF libraries
from langchain_community.llms import HuggingFaceEndpoint
from langchain_core.prompts import ChatPromptTemplate
from langchain import hub
import gradio as gr
from langchain.agents import AgentExecutor
from langchain.agents.format_scratchpad import format_log_to_str
from langchain.agents.output_parsers import (
ReActJsonSingleInputOutputParser,
)
# Import things that are needed generically
from typing import List, Dict
from langchain.tools.render import render_text_description
import os
from dotenv import load_dotenv
from innovation_pathfinder_ai.structured_tools.structured_tools import (
arxiv_search, get_arxiv_paper, google_search, wikipedia_search
)
# hacky and should be replaced with a database
from innovation_pathfinder_ai.source_container.container import (
all_sources
)
from innovation_pathfinder_ai.utils import collect_urls
# from langchain_community.chat_message_histories import ChatMessageHistory
# from langchain_core.runnables.history import RunnableWithMessageHistory
# message_history = ChatMessageHistory()
config = load_dotenv(".env")
HUGGINGFACEHUB_API_TOKEN = os.getenv('HUGGINGFACEHUB_API_TOKEN')
GOOGLE_CSE_ID = os.getenv('GOOGLE_CSE_ID')
GOOGLE_API_KEY = os.getenv('GOOGLE_API_KEY')
LANGCHAIN_TRACING_V2 = "true"
LANGCHAIN_ENDPOINT = "https://api.smith.langchain.com"
LANGCHAIN_API_KEY = os.getenv('LANGCHAIN_API_KEY')
LANGCHAIN_PROJECT = os.getenv('LANGCHAIN_PROJECT')
# Load the model from the Hugging Face Hub
llm = HuggingFaceEndpoint(repo_id="mistralai/Mixtral-8x7B-Instruct-v0.1",
temperature=0.1,
max_new_tokens=1024,
repetition_penalty=1.2,
return_full_text=False
)
tools_all = [
arxiv_search,
wikipedia_search,
google_search,
# get_arxiv_paper,
]
tools_papers = [
arxiv_search,
get_arxiv_paper,
]
prompt = hub.pull("hwchase17/react-json")
prompt = prompt.partial(
tools=render_text_description(tools),
tool_names=", ".join([t.name for t in tools]),
)
# define the agent
chat_model_with_stop = llm.bind(stop=["\nObservation"])
agent = (
{
"input": lambda x: x["input"],
"agent_scratchpad": lambda x: format_log_to_str(x["intermediate_steps"]),
}
| prompt
| chat_model_with_stop
| ReActJsonSingleInputOutputParser()
)
# instantiate AgentExecutor
agent_executor_all = AgentExecutor(
agent=agent,
tools=tools_all,
verbose=True,
max_iterations=6, # cap number of iterations
#max_execution_time=60, # timout at 60 sec
return_intermediate_steps=True,
handle_parsing_errors=True,
)
# instantiate AgentExecutor
agent_executor_noweb = AgentExecutor(
agent=agent,
tools=tools_papers,
verbose=True,
max_iterations=6, # cap number of iterations
#max_execution_time=60, # timout at 60 sec
return_intermediate_steps=True,
handle_parsing_errors=True,
)
if __name__ == "__main__":
def add_text(history, text):
history = history + [(text, None)]
return history, ""
def bot(history):
response = infer(history[-1][0], history)
sources = collect_urls(all_sources)
src_list = '\n'.join(sources)
response_w_sources = response['output']+"\n\n\n Sources: \n\n\n"+src_list
intermediate_steps = response['intermediate_steps']
history[-1][1] = response_w_sources
return history
def infer(question, history):
query = question
result = agent_executor_all.invoke(
{
"input": question,
}
)
return result
def vote(data: gr.LikeData):
if data.liked:
print("You upvoted this response: " + data.value)
else:
print("You downvoted this response: " + data.value)
css="""
#col-container {max-width: 700px; margin-left: auto; margin-right: auto;}
"""
title = """
<div style="text-align: center;max-width: 700px;">
<p>Hello Dave, how can I help today?<br />
</div>
"""
with gr.Blocks(theme=gr.themes.Soft()) as demo:
with gr.Tab("Google|Wikipedia|Arxiv"):
with gr.Column(elem_id="col-container"):
gr.HTML(title)
with gr.Row():
question = gr.Textbox(label="Question", placeholder="Type your question and hit Enter ")
chatbot = gr.Chatbot([], elem_id="chatbot")
chatbot.like(vote, None, None)
clear = gr.Button("Clear")
question.submit(add_text, [chatbot, question], [chatbot, question], queue=False).then(
bot, chatbot, chatbot
)
clear.click(lambda: None, None, chatbot, queue=False)
demo.queue()
demo.launch(debug=True)
x = 0 # for debugging purposes