Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from PIL import Image | |
import cv2 | |
import numpy as np | |
from transformers import CLIPProcessor, CLIPModel | |
from ultralytics import FastSAM | |
import supervision as sv | |
import os | |
import requests | |
from tqdm.auto import tqdm # For a nice progress bar | |
# --- Constants and Model Initialization --- | |
# CLIP | |
CLIP_MODEL_NAME = "openai/clip-vit-base-patch32" | |
# FastSAM | |
# *Corrected* HuggingFace link for the weights | |
FASTSAM_WEIGHTS_URL = "https://huggingface.co/spaces/An-619/FastSAM/resolve/6f76f474c656d2cb29599f49c296a8784b02d04b/weights/FastSAM-s.pt" | |
FASTSAM_WEIGHTS_NAME = "FastSAM-s.pt" | |
# Default FastSAM parameters | |
DEFAULT_IMGSZ = 640 | |
DEFAULT_CONFIDENCE = 0.4 | |
DEFAULT_IOU = 0.9 | |
DEFAULT_RETINA_MASKS = False | |
# --- Helper Functions --- | |
def download_file(url, filename): | |
"""Downloads a file from a URL with a progress bar.""" | |
response = requests.get(url, stream=True) | |
response.raise_for_status() # Raise an exception for bad status codes | |
total_size = int(response.headers.get('content-length', 0)) | |
block_size = 1024 # 1 KB | |
progress_bar = tqdm(total=total_size, unit='iB', unit_scale=True) | |
with open(filename, 'wb') as file: | |
for data in response.iter_content(block_size): | |
progress_bar.update(len(data)) | |
file.write(data) | |
progress_bar.close() | |
if total_size != 0 and progress_bar.n != total_size: | |
raise ValueError("Error: Download failed.") | |
# --- Model Loading --- | |
# Load CLIP model (this part is correct in your original code) | |
model = CLIPModel.from_pretrained(CLIP_MODEL_NAME) | |
processor = CLIPProcessor.from_pretrained(CLIP_MODEL_NAME) | |
# Load FastSAM model with dynamic device handling | |
if not os.path.exists(FASTSAM_WEIGHTS_NAME): | |
print(f"Downloading FastSAM weights from {FASTSAM_WEIGHTS_URL}...") | |
try: | |
download_file(FASTSAM_WEIGHTS_URL, FASTSAM_WEIGHTS_NAME) | |
print("FastSAM weights downloaded successfully.") | |
except Exception as e: | |
print(f"Error downloading FastSAM weights: {e}") | |
raise # Re-raise the exception to stop execution | |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
fast_sam = FastSAM(FASTSAM_WEIGHTS_NAME) | |
fast_sam.to(device) | |
print(f"FastSAM loaded on device: {device}") | |
# --- Processing Functions --- | |
def process_image_clip(image, text_input): | |
# ... (Your CLIP processing function remains the same) ... | |
if image is None: | |
return "Please upload an image first." | |
if not text_input: | |
return "Please enter some text to check in the image." | |
try: | |
# Convert numpy array to PIL Image if needed | |
if isinstance(image, np.ndarray): | |
image = Image.fromarray(image) | |
# Create a list of candidate labels | |
candidate_labels = [text_input, f"not {text_input}"] | |
# Process image and text | |
inputs = processor( | |
images=image, | |
text=candidate_labels, | |
return_tensors="pt", | |
padding=True | |
) | |
# Get model predictions | |
outputs = model(**{k: v for k, v in inputs.items()}) | |
logits_per_image = outputs.logits_per_image | |
probs = logits_per_image.softmax(dim=1) | |
# Get confidence for the positive label | |
confidence = float(probs[0][0]) | |
return f"Confidence that the image contains '{text_input}': {confidence:.2%}" | |
except Exception as e: | |
return f"Error processing image: {str(e)}" | |
def process_image_fastsam(image, imgsz, conf, iou, retina_masks): | |
if image is None: | |
return None, "Please upload an image to segment." | |
try: | |
# Convert PIL image to numpy array if needed | |
if isinstance(image, Image.Image): | |
image_np = np.array(image) | |
else: | |
image_np = image | |
# Run FastSAM inference | |
results = fast_sam(image_np, device=device, retina_masks=retina_masks, imgsz=imgsz, conf=conf, iou=iou) | |
# Check if results are valid | |
if results is None or len(results) == 0 or results[0] is None: | |
return None, "FastSAM did not return valid results. Try adjusting parameters or using a different image." | |
# Get detections | |
detections = sv.Detections.from_ultralytics(results[0]) | |
# Check if detections are valid | |
if detections is None or len(detections) == 0: | |
return None, "No objects detected in the image. Try lowering the confidence threshold." | |
# Create annotator | |
box_annotator = sv.BoxAnnotator() | |
mask_annotator = sv.MaskAnnotator() | |
# Annotate image | |
annotated_image = mask_annotator.annotate(scene=image_np.copy(), detections=detections) | |
annotated_image = box_annotator.annotate(scene=annotated_image, detections=detections) | |
return Image.fromarray(annotated_image), None # Return None for the error message since there's no error | |
except RuntimeError as re: | |
if "out of memory" in str(re).lower(): | |
return None, "Error: Out of memory. Try reducing the image size (imgsz) or disabling retina masks." | |
else: | |
return None, f"Runtime error during FastSAM processing: {str(re)}" | |
except Exception as e: | |
return None, f"Error processing image with FastSAM: {str(e)}" | |
# --- Gradio Interface --- | |
with gr.Blocks(css="footer {visibility: hidden}") as demo: | |
# ... (Your Markdown and CLIP tab remain mostly the same) ... | |
gr.Markdown(""" | |
# CLIP and FastSAM Demo | |
This demo combines two powerful AI models: | |
- **CLIP**: For zero-shot image classification | |
- **FastSAM**: For automatic image segmentation | |
Try uploading an image and use either of the tabs below! | |
""") | |
with gr.Tab("CLIP Zero-Shot Classification"): | |
with gr.Row(): | |
image_input = gr.Image(label="Input Image") | |
text_input = gr.Textbox( | |
label="What do you want to check in the image?", | |
placeholder="e.g., 'a dog', 'sunset', 'people playing'", | |
info="Enter any concept you want to check in the image" | |
) | |
output_text = gr.Textbox(label="Result") | |
classify_btn = gr.Button("Classify") | |
classify_btn.click(fn=process_image_clip, inputs=[image_input, text_input], outputs=output_text) | |
gr.Examples( | |
examples=[ | |
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/kitchen/kitchen.png", "kitchen"], | |
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/calculator/calculator.jpg", "calculator"], | |
], | |
inputs=[image_input, text_input], | |
) | |
with gr.Tab("FastSAM Segmentation"): | |
with gr.Row(): | |
image_input_sam = gr.Image(label="Input Image") | |
with gr.Column(): | |
imgsz_slider = gr.Slider(minimum=320, maximum=1920, step=32, value=DEFAULT_IMGSZ, label="Image Size (imgsz)") | |
conf_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=DEFAULT_CONFIDENCE, label="Confidence Threshold") | |
iou_slider = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, value=DEFAULT_IOU, label="IoU Threshold") | |
retina_checkbox = gr.Checkbox(label="Retina Masks", value=DEFAULT_RETINA_MASKS) | |
with gr.Row(): | |
image_output = gr.Image(label="Segmentation Result") | |
error_output = gr.Textbox(label="Error Message", type="text") # Added for displaying errors | |
segment_btn = gr.Button("Segment") | |
segment_btn.click( | |
fn=process_image_fastsam, | |
inputs=[image_input_sam, imgsz_slider, conf_slider, iou_slider, retina_checkbox], | |
outputs=[image_output, error_output] # Output to both image and error textboxes | |
) | |
gr.Examples( | |
examples=[ | |
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/kitchen/kitchen.png"], | |
["https://raw.githubusercontent.com/gradio-app/gradio/main/demo/calculator/calculator.jpg"], | |
], | |
inputs=[image_input_sam], | |
) | |
# ... (Your final Markdown remains the same) ... | |
gr.Markdown(""" | |
### How to use: | |
1. **CLIP Classification**: Upload an image and enter text to check if that concept exists in the image | |
2. **FastSAM Segmentation**: Upload an image to get automatic segmentation with bounding boxes and masks | |
### Note: | |
- The models run on CPU by default, so processing might take a few seconds. If you have a GPU, it will be used automatically. | |
- For best results, use clear images with good lighting. | |
- You can adjust FastSAM parameters (Image Size, Confidence, IoU, Retina Masks) in the Segmentation tab. | |
""") | |
demo.launch(share=True) |