File size: 9,715 Bytes
5f38454 21e3bc8 5f38454 21e3bc8 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 21e3bc8 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 11ba365 2700e0a 989094e fdee25f 8791bf4 fdee25f 989094e 2700e0a 5f38454 21e3bc8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
import os
import torch
import gradio as gr
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms as tfms
from diffusers import DiffusionPipeline
# Determine the appropriate device and dtype
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32
# Load the pipeline
model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
model_path,
torch_dtype=torch_dtype,
low_cpu_mem_usage=True if torch_device == "cpu" else False
).to(torch_device)
# Load textual inversions
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")
# Update style token dictionary
style_token_dict = {
"Illustration Style": '<illustration-style>',
"Line Art": '<line-art>',
"Hitokomoru Style": '<hitokomoru-style-nao>',
"Marc Allante": '<Marc_Allante>',
"Midjourney": '<midjourney-style>',
"Hanfu Anime": '<hanfu-anime-style>',
"Birb Style": '<birb-style>'
}
def apply_guidance(image, guidance_method, loss_scale):
# Convert PIL Image to tensor
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
if guidance_method == 'Grayscale':
gray = tfms.Grayscale(3)(img_tensor)
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000)
elif guidance_method == 'Bright':
bright = F.relu(img_tensor) # Simple brightness increase
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
elif guidance_method == 'Contrast':
mean = img_tensor.mean()
contrast = (img_tensor - mean) * 2 + mean
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
elif guidance_method == 'Symmetry':
flipped = torch.flip(img_tensor, [3]) # Flip horizontally
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000)
elif guidance_method == 'Saturation':
saturated = tfms.functional.adjust_saturation(img_tensor, 2)
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000)
else:
return image
# Convert back to PIL Image
guided = guided.squeeze(0).clamp(0, 1)
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy()
return Image.fromarray(guided)
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size):
prompt = text + " " + style_token_dict[style]
# Convert image_size from string to tuple of integers
size = tuple(map(int, image_size.split('x')))
# Generate image with pipeline
image_pipeline = sd_pipeline(
prompt,
num_inference_steps=inference_step,
guidance_scale=guidance_scale,
generator=torch.Generator(device=torch_device).manual_seed(seed),
height=size[1],
width=size[0]
).images[0]
# Apply guidance
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale)
return image_pipeline, image_guide
# HTML Template
HTML_TEMPLATE = """
<style>
body {
background: linear-gradient(135deg, #6e48aa, #9d50bb, #f4d03f);
font-family: 'Arial', sans-serif;
color: #333;
}
#app-header {
text-align: center;
background: rgba(255, 255, 255, 0.9);
padding: 30px;
border-radius: 20px;
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.2);
position: relative;
overflow: hidden;
margin-bottom: 30px;
}
#app-header::before {
content: "";
position: absolute;
top: -50%;
left: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, rgba(255,255,255,0) 70%);
animation: shimmer 10s infinite linear;
}
@keyframes shimmer {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
#app-header h1 {
color: #6e48aa;
font-size: 2.5em;
margin-bottom: 15px;
text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
}
#app-header p {
font-size: 1.2em;
color: #555;
}
.concept-container {
display: flex;
justify-content: center;
gap: 30px;
margin-top: 30px;
flex-wrap: wrap;
}
.concept {
position: relative;
transition: transform 0.3s, box-shadow 0.3s;
border-radius: 15px;
overflow: hidden;
background: white;
box-shadow: 0 5px 15px rgba(0,0,0,0.1);
}
.concept:hover {
transform: translateY(-10px) rotate(3deg);
box-shadow: 0 15px 30px rgba(0,0,0,0.2);
}
.concept img {
width: 120px;
height: 120px;
object-fit: cover;
border-radius: 15px 15px 0 0;
}
.concept-description {
background-color: #6e48aa;
color: white;
padding: 10px;
font-size: 0.9em;
text-align: center;
}
.artifact {
position: absolute;
background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, rgba(255,255,255,0) 70%);
border-radius: 50%;
opacity: 0.5;
}
.artifact.large {
width: 400px;
height: 400px;
top: -100px;
left: -200px;
animation: float 20s infinite ease-in-out;
}
.artifact.medium {
width: 300px;
height: 300px;
bottom: -150px;
right: -150px;
animation: float 15s infinite ease-in-out reverse;
}
.artifact.small {
width: 150px;
height: 150px;
top: 50%;
left: 50%;
transform: translate(-50%, -50%);
animation: pulse 5s infinite alternate;
}
@keyframes float {
0%, 100% { transform: translateY(0) rotate(0deg); }
50% { transform: translateY(-20px) rotate(10deg); }
}
@keyframes pulse {
0% { transform: scale(1); opacity: 0.5; }
100% { transform: scale(1.1); opacity: 0.8; }
}
</style>
<div id="app-header">
<div class="artifact large"></div>
<div class="artifact medium"></div>
<div class="artifact small"></div>
<h1>Dreamscape Creator</h1>
<p>Unleash your imagination with AI-powered generative art</p>
<div class="concept-container">
<div class="concept">
<img src="https://example.com/illustration-style.jpg" alt="Illustration Style">
<div class="concept-description">Illustration Style</div>
</div>
<div class="concept">
<img src="https://example.com/line-art.jpg" alt="Line Art">
<div class="concept-description">Line Art</div>
</div>
<div class="concept">
<img src="https://example.com/midjourney-style.jpg" alt="Midjourney Style">
<div class="concept-description">Midjourney Style</div>
</div>
<div class="concept">
<img src="https://example.com/hanfu-anime-style.jpg" alt="Hanfu Anime">
<div class="concept-description">Hanfu Anime</div>
</div>
</div>
</div>
"""
# Gradio Interface
with gr.Blocks(css=HTML_TEMPLATE) as demo:
gr.HTML(HTML_TEMPLATE)
with gr.Row():
text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...")
style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style")
with gr.Row():
inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps")
guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale")
seed = gr.Slider(0, 10000, 42, step=1, label="Seed")
with gr.Row():
guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale")
loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale")
with gr.Row():
image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256")
with gr.Row():
generate_button = gr.Button("Create Dreamscape", variant="primary")
with gr.Row():
output_image = gr.Image(label="Your Dreamscape")
output_image_guided = gr.Image(label="Guided Dreamscape")
generate_button.click(
inference,
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
outputs=[output_image, output_image_guided]
)
gr.Markdown("""
Note: Example generation may take some time due to CPU limitations.
Thank you for your patience!
""")
gr.Examples(
examples=[
["Floating island with waterfalls", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200, "256x256"],
["Futuristic city with neon lights", 'Line Art', 10, 8.0, 123, 'Bright', 300, "256x256"],
["Japanese garden with cherry blossoms", 'Hitokomoru Style', 10, 7.0, 789, 'Contrast', 250, "256x256"],
],
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
outputs=[output_image, output_image_guided],
fn=inference,
cache_examples=False, # Disable caching
)
if __name__ == "__main__":
demo.launch() |