File size: 9,715 Bytes
5f38454
 
 
 
 
 
21e3bc8
5f38454
21e3bc8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700e0a
 
 
11ba365
 
 
2700e0a
 
 
11ba365
 
 
 
2700e0a
11ba365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700e0a
 
11ba365
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2700e0a
 
 
11ba365
 
 
 
 
2700e0a
 
11ba365
 
2700e0a
 
11ba365
 
 
 
2700e0a
 
11ba365
2700e0a
11ba365
 
 
2700e0a
 
 
11ba365
2700e0a
11ba365
2700e0a
 
11ba365
 
 
 
 
2700e0a
 
11ba365
 
 
 
 
2700e0a
 
11ba365
 
2700e0a
 
 
11ba365
 
 
 
 
 
 
 
 
2700e0a
 
 
 
 
 
11ba365
 
 
2700e0a
 
 
 
 
 
 
 
11ba365
 
 
 
 
 
 
 
2700e0a
 
 
 
21e3bc8
2700e0a
11ba365
2700e0a
11ba365
2700e0a
 
11ba365
2700e0a
 
 
 
 
 
11ba365
 
 
2700e0a
11ba365
 
2700e0a
 
 
11ba365
2700e0a
 
989094e
 
 
 
 
 
 
fdee25f
8791bf4
 
 
fdee25f
 
 
 
989094e
2700e0a
5f38454
21e3bc8
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
import os
import torch
import gradio as gr
from PIL import Image
import torch.nn.functional as F
from torchvision import transforms as tfms
from diffusers import DiffusionPipeline

# Determine the appropriate device and dtype
torch_device = "cuda" if torch.cuda.is_available() else "cpu"
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32

# Load the pipeline
model_path = "CompVis/stable-diffusion-v1-4"
sd_pipeline = DiffusionPipeline.from_pretrained(
    model_path,
    torch_dtype=torch_dtype,
    low_cpu_mem_usage=True if torch_device == "cpu" else False
).to(torch_device)

# Load textual inversions
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art")
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao")
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante")
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style")
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style")

# Update style token dictionary
style_token_dict = {
    "Illustration Style": '<illustration-style>',
    "Line Art": '<line-art>',
    "Hitokomoru Style": '<hitokomoru-style-nao>',
    "Marc Allante": '<Marc_Allante>',
    "Midjourney": '<midjourney-style>',
    "Hanfu Anime": '<hanfu-anime-style>',
    "Birb Style": '<birb-style>'
}

def apply_guidance(image, guidance_method, loss_scale):
    # Convert PIL Image to tensor
    img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device)
    
    if guidance_method == 'Grayscale':
        gray = tfms.Grayscale(3)(img_tensor)
        guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000)
    elif guidance_method == 'Bright':
        bright = F.relu(img_tensor)  # Simple brightness increase
        guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000)
    elif guidance_method == 'Contrast':
        mean = img_tensor.mean()
        contrast = (img_tensor - mean) * 2 + mean
        guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000)
    elif guidance_method == 'Symmetry':
        flipped = torch.flip(img_tensor, [3])  # Flip horizontally
        guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000)
    elif guidance_method == 'Saturation':
        saturated = tfms.functional.adjust_saturation(img_tensor, 2)
        guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000)
    else:
        return image

    # Convert back to PIL Image
    guided = guided.squeeze(0).clamp(0, 1)
    guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy()
    return Image.fromarray(guided)

def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size):
    prompt = text + " " + style_token_dict[style]
    
    # Convert image_size from string to tuple of integers
    size = tuple(map(int, image_size.split('x')))

    # Generate image with pipeline
    image_pipeline = sd_pipeline(
        prompt,
        num_inference_steps=inference_step,
        guidance_scale=guidance_scale,
        generator=torch.Generator(device=torch_device).manual_seed(seed),
        height=size[1],
        width=size[0]
    ).images[0]

    # Apply guidance
    image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale)

    return image_pipeline, image_guide

# HTML Template
HTML_TEMPLATE = """
<style>
    body {
        background: linear-gradient(135deg, #6e48aa, #9d50bb, #f4d03f);
        font-family: 'Arial', sans-serif;
        color: #333;
    }
    #app-header {
        text-align: center;
        background: rgba(255, 255, 255, 0.9);
        padding: 30px;
        border-radius: 20px;
        box-shadow: 0 10px 20px rgba(0, 0, 0, 0.2);
        position: relative;
        overflow: hidden;
        margin-bottom: 30px;
    }
    #app-header::before {
        content: "";
        position: absolute;
        top: -50%;
        left: -50%;
        width: 200%;
        height: 200%;
        background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, rgba(255,255,255,0) 70%);
        animation: shimmer 10s infinite linear;
    }
    @keyframes shimmer {
        0% { transform: rotate(0deg); }
        100% { transform: rotate(360deg); }
    }
    #app-header h1 {
        color: #6e48aa;
        font-size: 2.5em;
        margin-bottom: 15px;
        text-shadow: 2px 2px 4px rgba(0,0,0,0.1);
    }
    #app-header p {
        font-size: 1.2em;
        color: #555;
    }
    .concept-container {
        display: flex;
        justify-content: center;
        gap: 30px;
        margin-top: 30px;
        flex-wrap: wrap;
    }
    .concept {
        position: relative;
        transition: transform 0.3s, box-shadow 0.3s;
        border-radius: 15px;
        overflow: hidden;
        background: white;
        box-shadow: 0 5px 15px rgba(0,0,0,0.1);
    }
    .concept:hover {
        transform: translateY(-10px) rotate(3deg);
        box-shadow: 0 15px 30px rgba(0,0,0,0.2);
    }
    .concept img {
        width: 120px;
        height: 120px;
        object-fit: cover;
        border-radius: 15px 15px 0 0;
    }
    .concept-description {
        background-color: #6e48aa;
        color: white;
        padding: 10px;
        font-size: 0.9em;
        text-align: center;
    }
    .artifact {
        position: absolute;
        background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, rgba(255,255,255,0) 70%);
        border-radius: 50%;
        opacity: 0.5;
    }
    .artifact.large {
        width: 400px;
        height: 400px;
        top: -100px;
        left: -200px;
        animation: float 20s infinite ease-in-out;
    }
    .artifact.medium {
        width: 300px;
        height: 300px;
        bottom: -150px;
        right: -150px;
        animation: float 15s infinite ease-in-out reverse;
    }
    .artifact.small {
        width: 150px;
        height: 150px;
        top: 50%;
        left: 50%;
        transform: translate(-50%, -50%);
        animation: pulse 5s infinite alternate;
    }
    @keyframes float {
        0%, 100% { transform: translateY(0) rotate(0deg); }
        50% { transform: translateY(-20px) rotate(10deg); }
    }
    @keyframes pulse {
        0% { transform: scale(1); opacity: 0.5; }
        100% { transform: scale(1.1); opacity: 0.8; }
    }
</style>
<div id="app-header">
    <div class="artifact large"></div>
    <div class="artifact medium"></div>
    <div class="artifact small"></div>
    <h1>Dreamscape Creator</h1>
    <p>Unleash your imagination with AI-powered generative art</p>
    <div class="concept-container">
        <div class="concept">
            <img src="https://example.com/illustration-style.jpg" alt="Illustration Style">
            <div class="concept-description">Illustration Style</div>
        </div>
        <div class="concept">
            <img src="https://example.com/line-art.jpg" alt="Line Art">
            <div class="concept-description">Line Art</div>
        </div>
        <div class="concept">
            <img src="https://example.com/midjourney-style.jpg" alt="Midjourney Style">
            <div class="concept-description">Midjourney Style</div>
        </div>
        <div class="concept">
            <img src="https://example.com/hanfu-anime-style.jpg" alt="Hanfu Anime">
            <div class="concept-description">Hanfu Anime</div>
        </div>
    </div>
</div>
"""

# Gradio Interface
with gr.Blocks(css=HTML_TEMPLATE) as demo:
    gr.HTML(HTML_TEMPLATE)
    with gr.Row():
        text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...")
        style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style")
    with gr.Row():
        inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps")
        guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale")
        seed = gr.Slider(0, 10000, 42, step=1, label="Seed")
    with gr.Row():
        guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale")
        loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale")
    with gr.Row():
        image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256")
    with gr.Row():
        generate_button = gr.Button("Create Dreamscape", variant="primary")
    with gr.Row():
        output_image = gr.Image(label="Your Dreamscape")
        output_image_guided = gr.Image(label="Guided Dreamscape")
    
    generate_button.click(
        inference,
        inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
        outputs=[output_image, output_image_guided]
    )

    gr.Markdown("""
        Note: Example generation may take some time due to CPU limitations. 
        Thank you for your patience!
    """)

    gr.Examples(
        examples=[
            ["Floating island with waterfalls", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200, "256x256"],
            ["Futuristic city with neon lights", 'Line Art', 10, 8.0, 123, 'Bright', 300, "256x256"],
            ["Japanese garden with cherry blossoms", 'Hitokomoru Style', 10, 7.0, 789, 'Contrast', 250, "256x256"],
        ],
        inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size],
        outputs=[output_image, output_image_guided],
        fn=inference,
        cache_examples=False,  # Disable caching
    )

if __name__ == "__main__":
    demo.launch()