Spaces:
Runtime error
Runtime error
import os | |
import torch | |
import gradio as gr | |
from PIL import Image | |
import torch.nn.functional as F | |
from torchvision import transforms as tfms | |
from diffusers import DiffusionPipeline | |
# Determine the appropriate device and dtype | |
torch_device = "cuda" if torch.cuda.is_available() else "cpu" | |
torch_dtype = torch.float16 if torch_device == "cuda" else torch.float32 | |
# Load the pipeline | |
model_path = "CompVis/stable-diffusion-v1-4" | |
sd_pipeline = DiffusionPipeline.from_pretrained( | |
model_path, | |
torch_dtype=torch_dtype, | |
low_cpu_mem_usage=True if torch_device == "cpu" else False | |
).to(torch_device) | |
# Load textual inversions | |
sd_pipeline.load_textual_inversion("sd-concepts-library/illustration-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/line-art") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/hitokomoru-style-nao") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/style-of-marc-allante") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/midjourney-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/hanfu-anime-style") | |
sd_pipeline.load_textual_inversion("sd-concepts-library/birb-style") | |
# Update style token dictionary | |
style_token_dict = { | |
"Illustration Style": '<illustration-style>', | |
"Line Art": '<line-art>', | |
"Hitokomoru Style": '<hitokomoru-style-nao>', | |
"Marc Allante": '<Marc_Allante>', | |
"Midjourney": '<midjourney-style>', | |
"Hanfu Anime": '<hanfu-anime-style>', | |
"Birb Style": '<birb-style>' | |
} | |
def apply_guidance(image, guidance_method, loss_scale): | |
# Convert PIL Image to tensor | |
img_tensor = tfms.ToTensor()(image).unsqueeze(0).to(torch_device) | |
if guidance_method == 'Grayscale': | |
gray = tfms.Grayscale(3)(img_tensor) | |
guided = img_tensor + (gray - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Bright': | |
bright = F.relu(img_tensor) # Simple brightness increase | |
guided = img_tensor + (bright - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Contrast': | |
mean = img_tensor.mean() | |
contrast = (img_tensor - mean) * 2 + mean | |
guided = img_tensor + (contrast - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Symmetry': | |
flipped = torch.flip(img_tensor, [3]) # Flip horizontally | |
guided = img_tensor + (flipped - img_tensor) * (loss_scale / 10000) | |
elif guidance_method == 'Saturation': | |
saturated = tfms.functional.adjust_saturation(img_tensor, 2) | |
guided = img_tensor + (saturated - img_tensor) * (loss_scale / 10000) | |
else: | |
return image | |
# Convert back to PIL Image | |
guided = guided.squeeze(0).clamp(0, 1) | |
guided = (guided * 255).byte().cpu().permute(1, 2, 0).numpy() | |
return Image.fromarray(guided) | |
def inference(text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size): | |
prompt = text + " " + style_token_dict[style] | |
# Convert image_size from string to tuple of integers | |
size = tuple(map(int, image_size.split('x'))) | |
# Generate image with pipeline | |
image_pipeline = sd_pipeline( | |
prompt, | |
num_inference_steps=inference_step, | |
guidance_scale=guidance_scale, | |
generator=torch.Generator(device=torch_device).manual_seed(seed), | |
height=size[1], | |
width=size[0] | |
).images[0] | |
# Apply guidance | |
image_guide = apply_guidance(image_pipeline, guidance_method, loss_scale) | |
return image_pipeline, image_guide | |
# HTML Template | |
HTML_TEMPLATE = """ | |
<style> | |
body { | |
background: linear-gradient(135deg, #6e48aa, #9d50bb, #f4d03f); | |
font-family: 'Arial', sans-serif; | |
color: #333; | |
} | |
#app-header { | |
text-align: center; | |
background: rgba(255, 255, 255, 0.9); | |
padding: 30px; | |
border-radius: 20px; | |
box-shadow: 0 10px 20px rgba(0, 0, 0, 0.2); | |
position: relative; | |
overflow: hidden; | |
margin-bottom: 30px; | |
} | |
#app-header::before { | |
content: ""; | |
position: absolute; | |
top: -50%; | |
left: -50%; | |
width: 200%; | |
height: 200%; | |
background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, rgba(255,255,255,0) 70%); | |
animation: shimmer 10s infinite linear; | |
} | |
@keyframes shimmer { | |
0% { transform: rotate(0deg); } | |
100% { transform: rotate(360deg); } | |
} | |
#app-header h1 { | |
color: #6e48aa; | |
font-size: 2.5em; | |
margin-bottom: 15px; | |
text-shadow: 2px 2px 4px rgba(0,0,0,0.1); | |
} | |
#app-header p { | |
font-size: 1.2em; | |
color: #555; | |
} | |
.concept-container { | |
display: flex; | |
justify-content: center; | |
gap: 30px; | |
margin-top: 30px; | |
flex-wrap: wrap; | |
} | |
.concept { | |
position: relative; | |
transition: transform 0.3s, box-shadow 0.3s; | |
border-radius: 15px; | |
overflow: hidden; | |
background: white; | |
box-shadow: 0 5px 15px rgba(0,0,0,0.1); | |
} | |
.concept:hover { | |
transform: translateY(-10px) rotate(3deg); | |
box-shadow: 0 15px 30px rgba(0,0,0,0.2); | |
} | |
.concept img { | |
width: 120px; | |
height: 120px; | |
object-fit: cover; | |
border-radius: 15px 15px 0 0; | |
} | |
.concept-description { | |
background-color: #6e48aa; | |
color: white; | |
padding: 10px; | |
font-size: 0.9em; | |
text-align: center; | |
} | |
.artifact { | |
position: absolute; | |
background: radial-gradient(circle, rgba(255,255,255,0.8) 0%, rgba(255,255,255,0) 70%); | |
border-radius: 50%; | |
opacity: 0.5; | |
} | |
.artifact.large { | |
width: 400px; | |
height: 400px; | |
top: -100px; | |
left: -200px; | |
animation: float 20s infinite ease-in-out; | |
} | |
.artifact.medium { | |
width: 300px; | |
height: 300px; | |
bottom: -150px; | |
right: -150px; | |
animation: float 15s infinite ease-in-out reverse; | |
} | |
.artifact.small { | |
width: 150px; | |
height: 150px; | |
top: 50%; | |
left: 50%; | |
transform: translate(-50%, -50%); | |
animation: pulse 5s infinite alternate; | |
} | |
@keyframes float { | |
0%, 100% { transform: translateY(0) rotate(0deg); } | |
50% { transform: translateY(-20px) rotate(10deg); } | |
} | |
@keyframes pulse { | |
0% { transform: scale(1); opacity: 0.5; } | |
100% { transform: scale(1.1); opacity: 0.8; } | |
} | |
</style> | |
<div id="app-header"> | |
<div class="artifact large"></div> | |
<div class="artifact medium"></div> | |
<div class="artifact small"></div> | |
<h1>Dreamscape Creator</h1> | |
<p>Unleash your imagination with AI-powered generative art</p> | |
<div class="concept-container"> | |
<div class="concept"> | |
<img src="https://example.com/illustration-style.jpg" alt="Illustration Style"> | |
<div class="concept-description">Illustration Style</div> | |
</div> | |
<div class="concept"> | |
<img src="https://example.com/line-art.jpg" alt="Line Art"> | |
<div class="concept-description">Line Art</div> | |
</div> | |
<div class="concept"> | |
<img src="https://example.com/midjourney-style.jpg" alt="Midjourney Style"> | |
<div class="concept-description">Midjourney Style</div> | |
</div> | |
<div class="concept"> | |
<img src="https://example.com/hanfu-anime-style.jpg" alt="Hanfu Anime"> | |
<div class="concept-description">Hanfu Anime</div> | |
</div> | |
</div> | |
</div> | |
""" | |
# Gradio Interface | |
with gr.Blocks(css=HTML_TEMPLATE) as demo: | |
gr.HTML(HTML_TEMPLATE) | |
with gr.Row(): | |
text = gr.Textbox(label="Prompt", placeholder="Describe your dreamscape...") | |
style = gr.Dropdown(label="Style", choices=list(style_token_dict.keys()), value="Illustration Style") | |
with gr.Row(): | |
inference_step = gr.Slider(1, 50, 20, step=1, label="Inference steps") | |
guidance_scale = gr.Slider(1, 10, 7.5, step=0.1, label="Guidance scale") | |
seed = gr.Slider(0, 10000, 42, step=1, label="Seed") | |
with gr.Row(): | |
guidance_method = gr.Dropdown(label="Guidance method", choices=['Grayscale', 'Bright', 'Contrast', 'Symmetry', 'Saturation'], value="Grayscale") | |
loss_scale = gr.Slider(100, 10000, 200, step=100, label="Loss scale") | |
with gr.Row(): | |
image_size = gr.Radio(["256x256", "512x512"], label="Image Size", value="256x256") | |
with gr.Row(): | |
generate_button = gr.Button("Create Dreamscape", variant="primary") | |
with gr.Row(): | |
output_image = gr.Image(label="Your Dreamscape") | |
output_image_guided = gr.Image(label="Guided Dreamscape") | |
generate_button.click( | |
inference, | |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size], | |
outputs=[output_image, output_image_guided] | |
) | |
gr.Markdown(""" | |
Note: Example generation may take some time due to CPU limitations. | |
Thank you for your patience! | |
""") | |
gr.Examples( | |
examples=[ | |
["Floating island with waterfalls", 'Illustration Style', 10, 7.5, 42, 'Grayscale', 200, "256x256"], | |
["Futuristic city with neon lights", 'Line Art', 10, 8.0, 123, 'Bright', 300, "256x256"], | |
["Japanese garden with cherry blossoms", 'Hitokomoru Style', 10, 7.0, 789, 'Contrast', 250, "256x256"], | |
], | |
inputs=[text, style, inference_step, guidance_scale, seed, guidance_method, loss_scale, image_size], | |
outputs=[output_image, output_image_guided], | |
fn=inference, | |
cache_examples=False, # Disable caching | |
) | |
if __name__ == "__main__": | |
demo.launch() |