Spaces:
Sleeping
Sleeping
import gradio as gr | |
from huggingface_hub import InferenceClient | |
import threading | |
import time | |
# Use a smaller model | |
client = InferenceClient("distilgpt2") | |
def generate_with_timeout(prompt, max_new_tokens, temperature, top_p, timeout=10): | |
result = [] | |
def target(): | |
try: | |
response = client.text_generation( | |
prompt, | |
max_new_tokens=max_new_tokens, | |
temperature=temperature, | |
top_p=top_p, | |
do_sample=True, | |
) | |
result.append(response) | |
except Exception as e: | |
result.append(str(e)) | |
thread = threading.Thread(target=target) | |
thread.start() | |
thread.join(timeout) | |
if thread.is_alive(): | |
return "I'm sorry, but I'm having trouble generating a response right now. Could you try again?" | |
elif result: | |
return result[0] | |
else: | |
return "An error occurred while generating the response." | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
): | |
# Construct the prompt from history and current message | |
prompt = system_message + "\n\n" | |
for user_msg, bot_msg in history: | |
prompt += f"Human: {user_msg}\nAI: {bot_msg}\n" | |
prompt += f"Human: {message}\nAI:" | |
response = generate_with_timeout(prompt, max_tokens, temperature, top_p) | |
# Extract only the AI's response | |
ai_response = response.split("AI:")[-1].strip() | |
return ai_response | |
demo = gr.ChatInterface( | |
respond, | |
additional_inputs=[ | |
gr.Textbox(value="You are a helpful AI assistant.", label="System message"), | |
gr.Slider(minimum=1, maximum=100, value=50, step=1, label="Max new tokens"), | |
gr.Slider(minimum=0.1, maximum=1.0, value=0.7, step=0.1, label="Temperature"), | |
gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.9, | |
step=0.05, | |
label="Top-p (nucleus sampling)", | |
), | |
], | |
) | |
if __name__ == "__main__": | |
demo.launch() |