Spaces:
Runtime error
Runtime error
import gradio as gr | |
from datasets import load_dataset | |
from sentence_transformers import SentenceTransformer | |
import os | |
import requests | |
os.environ['NO_PROXY'] = 'huggingface.co' | |
model = SentenceTransformer('clip-ViT-B-32') | |
# Candidate images. | |
dataset = load_dataset("sasha/pedro-embeddings-new") | |
ds = dataset["train"] | |
ds.add_faiss_index(column='embeddings') | |
def query(image, number_to_retrieve=1): | |
input_image = model.encode(image) | |
scores, retrieved_examples = ds.get_nearest_examples('embeddings', input_image, k=number_to_retrieve) | |
return retrieved_examples['image'][0] | |
with gr.Blocks() as demo: | |
gr.Markdown("# Find my Pedro Pascal") | |
gr.Markdown("## Use this Space to find the Pedro Pascal most similar to your input image!") | |
with gr.Row(): | |
with gr.Column(scale=1, min_width=600): | |
inputs = gr.Image(type='pil') | |
btn = gr.Button("Find my Pedro!") | |
description = gr.Markdown() | |
with gr.Column(scale=1, min_width=600): | |
outputs=gr.Image() | |
gr.Markdown("### Image Examples") | |
gr.Examples( | |
examples=["elton.jpg", "ken.jpg", "gaga.jpg", "taylor.jpg"], | |
inputs=inputs, | |
outputs=[outputs], | |
fn=query, | |
cache_examples=True, | |
) | |
btn.click(query, inputs, [outputs]) | |
demo.launch() | |