Spaces:
Running
on
A10G
Running
on
A10G
import sys | |
sys.path.append("../../") | |
import os | |
import json | |
import time | |
import psutil | |
import argparse | |
import cv2 | |
import torch | |
import torchvision | |
import numpy as np | |
import gradio as gr | |
from tools.painter import mask_painter | |
from track_anything import TrackingAnything | |
from model.misc import get_device | |
from utils.download_util import load_file_from_url, download_url_to_file | |
# make sample videos into mp4 as git does not allow mp4 without lfs | |
sample_videos_path = os.path.join('/home/user/app/web-demos/hugging_face/', "test_sample/") | |
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281805130-e57c7016-5a6d-4d3b-9df9-b4ea6372cc87.mp4", os.path.join(sample_videos_path, "test-sample0.mp4")) | |
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281828039-5def0fc9-3a22-45b7-838d-6bf78b6772c3.mp4", os.path.join(sample_videos_path, "test-sample1.mp4")) | |
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/76810782/281807801-69b9f70c-1e56-428d-9b1b-4870c5e533a7.mp4", os.path.join(sample_videos_path, "test-sample2.mp4")) | |
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/76810782/281808625-ad98f03f-99c7-4008-acf1-3d7beb48f13b.mp4", os.path.join(sample_videos_path, "test-sample3.mp4")) | |
download_url_to_file("https://github-production-user-asset-6210df.s3.amazonaws.com/14334509/281828066-ee09ae82-916f-4a2e-a6c7-6fc50645fd20.mp4", os.path.join(sample_videos_path, "test-sample4.mp4")) | |
def parse_augment(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--device', type=str, default=None) | |
parser.add_argument('--sam_model_type', type=str, default="vit_h") | |
parser.add_argument('--port', type=int, default=8000, help="only useful when running gradio applications") | |
parser.add_argument('--mask_save', default=False) | |
args = parser.parse_args() | |
if not args.device: | |
args.device = str(get_device()) | |
return args | |
# convert points input to prompt state | |
def get_prompt(click_state, click_input): | |
inputs = json.loads(click_input) | |
points = click_state[0] | |
labels = click_state[1] | |
for input in inputs: | |
points.append(input[:2]) | |
labels.append(input[2]) | |
click_state[0] = points | |
click_state[1] = labels | |
prompt = { | |
"prompt_type":["click"], | |
"input_point":click_state[0], | |
"input_label":click_state[1], | |
"multimask_output":"True", | |
} | |
return prompt | |
# extract frames from upload video | |
def get_frames_from_video(video_input, video_state): | |
""" | |
Args: | |
video_path:str | |
timestamp:float64 | |
Return | |
[[0:nearest_frame], [nearest_frame:], nearest_frame] | |
""" | |
video_path = video_input | |
frames = [] | |
user_name = time.time() | |
status_ok = True | |
operation_log = [("[Must Do]", "Click image"), (": Video uploaded! Try to click the image shown in step2 to add masks.\n", None)] | |
try: | |
cap = cv2.VideoCapture(video_path) | |
fps = cap.get(cv2.CAP_PROP_FPS) | |
length = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) | |
if length >= 500: | |
operation_log = [("You uploaded a video with more than 500 frames. Stop the video extraction. Kindly lower the video frame rate to a value below 500. We highly recommend deploying the demo locally for long video processing.", "Error")] | |
ret, frame = cap.read() | |
if ret == True: | |
original_h, original_w = frame.shape[:2] | |
scale_factor = min(1, 1280/max(original_h, original_w)) | |
target_h, target_w = int(original_h*scale_factor), int(original_w*scale_factor) | |
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
status_ok = False | |
else: | |
while cap.isOpened(): | |
ret, frame = cap.read() | |
if ret == True: | |
# resize input image | |
original_h, original_w = frame.shape[:2] | |
scale_factor = min(1, 1280/max(original_h, original_w)) | |
target_h, target_w = int(original_h*scale_factor), int(original_w*scale_factor) | |
if scale_factor != 1: | |
frame = cv2.resize(frame, (target_w, target_h)) | |
frames.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) | |
else: | |
break | |
t = len(frames) | |
if t > 0: | |
print(f'Inp video shape: t_{t}, s_{original_h}x{original_w} to s_{target_h}x{target_w}') | |
else: | |
print(f'Inp video shape: t_{t}, no input video!!!') | |
except (OSError, TypeError, ValueError, KeyError, SyntaxError) as e: | |
status_ok = False | |
print("read_frame_source:{} error. {}\n".format(video_path, str(e))) | |
# initialize video_state | |
if frames[0].shape[0] > 720 or frames[0].shape[1] > 720: | |
operation_log = [(f"Video uploaded! Try to click the image shown in step2 to add masks. (You uploaded a video with a size of {original_w}x{original_h}, and the length of its longest edge exceeds 720 pixels. We may resize the input video during processing.)", "Normal")] | |
video_state = { | |
"user_name": user_name, | |
"video_name": os.path.split(video_path)[-1], | |
"origin_images": frames, | |
"painted_images": frames.copy(), | |
"masks": [np.zeros((target_h, target_w), np.uint8)]*len(frames), | |
"logits": [None]*len(frames), | |
"select_frame_number": 0, | |
"fps": fps | |
} | |
video_info = "Video Name: {},\nFPS: {},\nTotal Frames: {},\nImage Size:{}".format(video_state["video_name"], round(video_state["fps"], 0), length, (original_w, original_h)) | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][0]) | |
return video_state, video_info, video_state["origin_images"][0], gr.update(visible=status_ok, maximum=len(frames), value=1), gr.update(visible=status_ok, maximum=len(frames), value=len(frames)), \ | |
gr.update(visible=status_ok), gr.update(visible=status_ok), \ | |
gr.update(visible=status_ok), gr.update(visible=status_ok),\ | |
gr.update(visible=status_ok), gr.update(visible=status_ok), \ | |
gr.update(visible=status_ok), gr.update(visible=status_ok), \ | |
gr.update(visible=status_ok), gr.update(visible=status_ok), \ | |
gr.update(visible=status_ok), gr.update(visible=status_ok, choices=[], value=[]), \ | |
gr.update(visible=True, value=operation_log), gr.update(visible=status_ok, value=operation_log) | |
# get the select frame from gradio slider | |
def select_template(image_selection_slider, video_state, interactive_state, mask_dropdown): | |
# images = video_state[1] | |
image_selection_slider -= 1 | |
video_state["select_frame_number"] = image_selection_slider | |
# once select a new template frame, set the image in sam | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][image_selection_slider]) | |
operation_log = [("",""), ("Select tracking start frame {}. Try to click the image to add masks for tracking.".format(image_selection_slider),"Normal")] | |
return video_state["painted_images"][image_selection_slider], video_state, interactive_state, operation_log, operation_log | |
# set the tracking end frame | |
def get_end_number(track_pause_number_slider, video_state, interactive_state): | |
interactive_state["track_end_number"] = track_pause_number_slider | |
operation_log = [("",""),("Select tracking finish frame {}.Try to click the image to add masks for tracking.".format(track_pause_number_slider),"Normal")] | |
return video_state["painted_images"][track_pause_number_slider],interactive_state, operation_log, operation_log | |
# use sam to get the mask | |
def sam_refine(video_state, point_prompt, click_state, interactive_state, evt:gr.SelectData): | |
""" | |
Args: | |
template_frame: PIL.Image | |
point_prompt: flag for positive or negative button click | |
click_state: [[points], [labels]] | |
""" | |
if point_prompt == "Positive": | |
coordinate = "[[{},{},1]]".format(evt.index[0], evt.index[1]) | |
interactive_state["positive_click_times"] += 1 | |
else: | |
coordinate = "[[{},{},0]]".format(evt.index[0], evt.index[1]) | |
interactive_state["negative_click_times"] += 1 | |
# prompt for sam model | |
model.samcontroler.sam_controler.reset_image() | |
model.samcontroler.sam_controler.set_image(video_state["origin_images"][video_state["select_frame_number"]]) | |
prompt = get_prompt(click_state=click_state, click_input=coordinate) | |
mask, logit, painted_image = model.first_frame_click( | |
image=video_state["origin_images"][video_state["select_frame_number"]], | |
points=np.array(prompt["input_point"]), | |
labels=np.array(prompt["input_label"]), | |
multimask=prompt["multimask_output"], | |
) | |
video_state["masks"][video_state["select_frame_number"]] = mask | |
video_state["logits"][video_state["select_frame_number"]] = logit | |
video_state["painted_images"][video_state["select_frame_number"]] = painted_image | |
operation_log = [("[Must Do]", "Add mask"), (": add the current displayed mask for video segmentation.\n", None), | |
("[Optional]", "Remove mask"), (": remove all added masks.\n", None), | |
("[Optional]", "Clear clicks"), (": clear current displayed mask.\n", None), | |
("[Optional]", "Click image"), (": Try to click the image shown in step2 if you want to generate more masks.\n", None)] | |
return painted_image, video_state, interactive_state, operation_log, operation_log | |
def add_multi_mask(video_state, interactive_state, mask_dropdown): | |
try: | |
mask = video_state["masks"][video_state["select_frame_number"]] | |
interactive_state["multi_mask"]["masks"].append(mask) | |
interactive_state["multi_mask"]["mask_names"].append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) | |
mask_dropdown.append("mask_{:03d}".format(len(interactive_state["multi_mask"]["masks"]))) | |
select_frame, _, _ = show_mask(video_state, interactive_state, mask_dropdown) | |
operation_log = [("",""),("Added a mask, use the mask select for target tracking or inpainting.","Normal")] | |
except: | |
operation_log = [("Please click the image in step2 to generate masks.", "Error"), ("","")] | |
return interactive_state, gr.update(choices=interactive_state["multi_mask"]["mask_names"], value=mask_dropdown), select_frame, [[],[]], operation_log, operation_log | |
def clear_click(video_state, click_state): | |
click_state = [[],[]] | |
template_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
operation_log = [("",""), ("Cleared points history and refresh the image.","Normal")] | |
return template_frame, click_state, operation_log, operation_log | |
def remove_multi_mask(interactive_state, mask_dropdown): | |
interactive_state["multi_mask"]["mask_names"]= [] | |
interactive_state["multi_mask"]["masks"] = [] | |
operation_log = [("",""), ("Remove all masks. Try to add new masks","Normal")] | |
return interactive_state, gr.update(choices=[],value=[]), operation_log, operation_log | |
def show_mask(video_state, interactive_state, mask_dropdown): | |
mask_dropdown.sort() | |
select_frame = video_state["origin_images"][video_state["select_frame_number"]] | |
for i in range(len(mask_dropdown)): | |
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
mask = interactive_state["multi_mask"]["masks"][mask_number] | |
select_frame = mask_painter(select_frame, mask.astype('uint8'), mask_color=mask_number+2) | |
operation_log = [("",""), ("Added masks {}. If you want to do the inpainting with current masks, please go to step3, and click the Tracking button first and then Inpainting button.".format(mask_dropdown),"Normal")] | |
return select_frame, operation_log, operation_log | |
# tracking vos | |
def vos_tracking_video(video_state, interactive_state, mask_dropdown): | |
operation_log = [("",""), ("Tracking finished! Try to click the Inpainting button to get the inpainting result.","Normal")] | |
model.cutie.clear_memory() | |
if interactive_state["track_end_number"]: | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] | |
else: | |
following_frames = video_state["origin_images"][video_state["select_frame_number"]:] | |
if interactive_state["multi_mask"]["masks"]: | |
if len(mask_dropdown) == 0: | |
mask_dropdown = ["mask_001"] | |
mask_dropdown.sort() | |
template_mask = interactive_state["multi_mask"]["masks"][int(mask_dropdown[0].split("_")[1]) - 1] * (int(mask_dropdown[0].split("_")[1])) | |
for i in range(1,len(mask_dropdown)): | |
mask_number = int(mask_dropdown[i].split("_")[1]) - 1 | |
template_mask = np.clip(template_mask+interactive_state["multi_mask"]["masks"][mask_number]*(mask_number+1), 0, mask_number+1) | |
video_state["masks"][video_state["select_frame_number"]]= template_mask | |
else: | |
template_mask = video_state["masks"][video_state["select_frame_number"]] | |
fps = video_state["fps"] | |
# operation error | |
if len(np.unique(template_mask))==1: | |
template_mask[0][0]=1 | |
operation_log = [("Please add at least one mask to track by clicking the image in step2.","Error"), ("","")] | |
# return video_output, video_state, interactive_state, operation_error | |
masks, logits, painted_images = model.generator(images=following_frames, template_mask=template_mask) | |
# clear GPU memory | |
model.cutie.clear_memory() | |
if interactive_state["track_end_number"]: | |
video_state["masks"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = masks | |
video_state["logits"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = logits | |
video_state["painted_images"][video_state["select_frame_number"]:interactive_state["track_end_number"]] = painted_images | |
else: | |
video_state["masks"][video_state["select_frame_number"]:] = masks | |
video_state["logits"][video_state["select_frame_number"]:] = logits | |
video_state["painted_images"][video_state["select_frame_number"]:] = painted_images | |
video_output = generate_video_from_frames(video_state["painted_images"], output_path="./result/track/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video | |
interactive_state["inference_times"] += 1 | |
print("For generating this tracking result, inference times: {}, click times: {}, positive: {}, negative: {}".format(interactive_state["inference_times"], | |
interactive_state["positive_click_times"]+interactive_state["negative_click_times"], | |
interactive_state["positive_click_times"], | |
interactive_state["negative_click_times"])) | |
#### shanggao code for mask save | |
if interactive_state["mask_save"]: | |
if not os.path.exists('./result/mask/{}'.format(video_state["video_name"].split('.')[0])): | |
os.makedirs('./result/mask/{}'.format(video_state["video_name"].split('.')[0])) | |
i = 0 | |
print("save mask") | |
for mask in video_state["masks"]: | |
np.save(os.path.join('./result/mask/{}'.format(video_state["video_name"].split('.')[0]), '{:05d}.npy'.format(i)), mask) | |
i+=1 | |
# save_mask(video_state["masks"], video_state["video_name"]) | |
#### shanggao code for mask save | |
return video_output, video_state, interactive_state, operation_log, operation_log | |
# inpaint | |
def inpaint_video(video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown): | |
operation_log = [("",""), ("Inpainting finished!","Normal")] | |
frames = np.asarray(video_state["origin_images"]) | |
fps = video_state["fps"] | |
inpaint_masks = np.asarray(video_state["masks"]) | |
if len(mask_dropdown) == 0: | |
mask_dropdown = ["mask_001"] | |
mask_dropdown.sort() | |
# convert mask_dropdown to mask numbers | |
inpaint_mask_numbers = [int(mask_dropdown[i].split("_")[1]) for i in range(len(mask_dropdown))] | |
# interate through all masks and remove the masks that are not in mask_dropdown | |
unique_masks = np.unique(inpaint_masks) | |
num_masks = len(unique_masks) - 1 | |
for i in range(1, num_masks + 1): | |
if i in inpaint_mask_numbers: | |
continue | |
inpaint_masks[inpaint_masks==i] = 0 | |
# inpaint for videos | |
inpainted_frames = model.baseinpainter.inpaint(frames, | |
inpaint_masks, | |
ratio=resize_ratio_number, | |
dilate_radius=dilate_radius_number, | |
raft_iter=raft_iter_number, | |
subvideo_length=subvideo_length_number, | |
neighbor_length=neighbor_length_number, | |
ref_stride=ref_stride_number) # numpy array, T, H, W, 3 | |
video_output = generate_video_from_frames(inpainted_frames, output_path="./result/inpaint/{}".format(video_state["video_name"]), fps=fps) # import video_input to name the output video | |
return video_output, operation_log, operation_log | |
# generate video after vos inference | |
def generate_video_from_frames(frames, output_path, fps=30): | |
""" | |
Generates a video from a list of frames. | |
Args: | |
frames (list of numpy arrays): The frames to include in the video. | |
output_path (str): The path to save the generated video. | |
fps (int, optional): The frame rate of the output video. Defaults to 30. | |
""" | |
frames = torch.from_numpy(np.asarray(frames)) | |
if not os.path.exists(os.path.dirname(output_path)): | |
os.makedirs(os.path.dirname(output_path)) | |
torchvision.io.write_video(output_path, frames, fps=fps, video_codec="libx264") | |
return output_path | |
def restart(): | |
operation_log = [("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")] | |
return { | |
"user_name": "", | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
}, { | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": args.mask_save, | |
"multi_mask": { | |
"mask_names": [], | |
"masks": [] | |
}, | |
"track_end_number": None, | |
}, [[],[]], None, None, None, \ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),\ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), \ | |
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), gr.update(visible=False), "", \ | |
gr.update(visible=True, value=operation_log), gr.update(visible=False, value=operation_log) | |
# args, defined in track_anything.py | |
args = parse_augment() | |
pretrain_model_url = 'https://github.com/sczhou/ProPainter/releases/download/v0.1.0/' | |
sam_checkpoint_url_dict = { | |
'vit_h': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth", | |
'vit_l': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth", | |
'vit_b': "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth" | |
} | |
checkpoint_fodler = os.path.join('..', '..', 'weights') | |
sam_checkpoint = load_file_from_url(sam_checkpoint_url_dict[args.sam_model_type], checkpoint_fodler) | |
cutie_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'cutie-base-mega.pth'), checkpoint_fodler) | |
propainter_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'ProPainter.pth'), checkpoint_fodler) | |
raft_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'raft-things.pth'), checkpoint_fodler) | |
flow_completion_checkpoint = load_file_from_url(os.path.join(pretrain_model_url, 'recurrent_flow_completion.pth'), checkpoint_fodler) | |
# initialize sam, cutie, propainter models | |
model = TrackingAnything(sam_checkpoint, cutie_checkpoint, propainter_checkpoint, raft_checkpoint, flow_completion_checkpoint, args) | |
title = r"""<h1 align="center">ProPainter: Improving Propagation and Transformer for Video Inpainting</h1>""" | |
description = r""" | |
<center><img src='https://github.com/sczhou/ProPainter/raw/main/assets/propainter_logo1_glow.png' alt='Propainter logo' style="width:180px; margin-bottom:20px"></center> | |
<b>Official Gradio demo</b> for <a href='https://github.com/sczhou/ProPainter' target='_blank'><b>Improving Propagation and Transformer for Video Inpainting (ICCV 2023)</b></a>.<br> | |
π₯ Propainter is a robust inpainting algorithm.<br> | |
π€ Try to drop your video, add the masks and get the the inpainting results!<br> | |
""" | |
article = r""" | |
If ProPainter is helpful, please help to β the <a href='https://github.com/sczhou/ProPainter' target='_blank'>Github Repo</a>. Thanks! | |
[![GitHub Stars](https://img.shields.io/github/stars/sczhou/ProPainter?style=social)](https://github.com/sczhou/ProPainter) | |
--- | |
π **Citation** | |
<br> | |
If our work is useful for your research, please consider citing: | |
```bibtex | |
@inproceedings{zhou2023propainter, | |
title={{ProPainter}: Improving Propagation and Transformer for Video Inpainting}, | |
author={Zhou, Shangchen and Li, Chongyi and Chan, Kelvin C.K and Loy, Chen Change}, | |
booktitle={Proceedings of IEEE International Conference on Computer Vision (ICCV)}, | |
year={2023} | |
} | |
``` | |
π **License** | |
<br> | |
This project is licensed under <a rel="license" href="https://github.com/sczhou/CodeFormer/blob/master/LICENSE">S-Lab License 1.0</a>. | |
Redistribution and use for non-commercial purposes should follow this license. | |
π§ **Contact** | |
<br> | |
If you have any questions, please feel free to reach me out at <b>[email protected]</b>. | |
<div> | |
π€ Find Me: | |
<a href="https://twitter.com/ShangchenZhou"><img style="margin-top:0.5em; margin-bottom:0.5em" src="https://img.shields.io/twitter/follow/ShangchenZhou?label=%40ShangchenZhou&style=social" alt="Twitter Follow"></a> | |
<a href="https://github.com/sczhou"><img style="margin-top:0.5em; margin-bottom:2em" src="https://img.shields.io/github/followers/sczhou?style=social" alt="Github Follow"></a> | |
</div> | |
""" | |
css = """ | |
.gradio-container {width: 85% !important} | |
.gr-monochrome-group {border-radius: 5px !important; border: revert-layer !important; border-width: 2px !important; color: black !important;} | |
span.svelte-s1r2yt {font-size: 17px !important; font-weight: bold !important; color: #d30f2f !important;} | |
button {border-radius: 8px !important;} | |
.add_button {background-color: #4CAF50 !important;} | |
.remove_button {background-color: #f44336 !important;} | |
.clear_button {background-color: gray !important;} | |
.mask_button_group {gap: 10px !important;} | |
.video {height: 300px !important;} | |
.image {height: 300px !important;} | |
.video .wrap.svelte-lcpz3o {display: flex !important; align-items: center !important; justify-content: center !important;} | |
.video .wrap.svelte-lcpz3o > :first-child {height: 100% !important;} | |
.margin_center {width: 50% !important; margin: auto !important;} | |
.jc_center {justify-content: center !important;} | |
""" | |
with gr.Blocks(theme=gr.themes.Monochrome(), css=css) as iface: | |
click_state = gr.State([[],[]]) | |
interactive_state = gr.State({ | |
"inference_times": 0, | |
"negative_click_times" : 0, | |
"positive_click_times": 0, | |
"mask_save": args.mask_save, | |
"multi_mask": { | |
"mask_names": [], | |
"masks": [] | |
}, | |
"track_end_number": None, | |
} | |
) | |
video_state = gr.State( | |
{ | |
"user_name": "", | |
"video_name": "", | |
"origin_images": None, | |
"painted_images": None, | |
"masks": None, | |
"inpaint_masks": None, | |
"logits": None, | |
"select_frame_number": 0, | |
"fps": 30 | |
} | |
) | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Group(elem_classes="gr-monochrome-group"): | |
with gr.Row(): | |
with gr.Accordion('ProPainter Parameters (click to expand)', open=False): | |
with gr.Row(): | |
resize_ratio_number = gr.Slider(label='Resize ratio', | |
minimum=0.01, | |
maximum=1.0, | |
step=0.01, | |
value=1.0) | |
raft_iter_number = gr.Slider(label='Iterations for RAFT inference.', | |
minimum=5, | |
maximum=20, | |
step=1, | |
value=20,) | |
with gr.Row(): | |
dilate_radius_number = gr.Slider(label='Mask dilation for video and flow masking.', | |
minimum=0, | |
maximum=10, | |
step=1, | |
value=8,) | |
subvideo_length_number = gr.Slider(label='Length of sub-video for long video inference.', | |
minimum=40, | |
maximum=200, | |
step=1, | |
value=80,) | |
with gr.Row(): | |
neighbor_length_number = gr.Slider(label='Length of local neighboring frames.', | |
minimum=5, | |
maximum=20, | |
step=1, | |
value=10,) | |
ref_stride_number = gr.Slider(label='Stride of global reference frames.', | |
minimum=5, | |
maximum=20, | |
step=1, | |
value=10,) | |
with gr.Column(): | |
# input video | |
gr.Markdown("## Step1: Upload video") | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
video_input = gr.Video(elem_classes="video") | |
extract_frames_button = gr.Button(value="Get video info", interactive=True, variant="primary") | |
with gr.Column(scale=2): | |
run_status = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")], | |
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"}) | |
video_info = gr.Textbox(label="Video Info") | |
# add masks | |
step2_title = gr.Markdown("---\n## Step2: Add masks", visible=False) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
template_frame = gr.Image(type="pil",interactive=True, elem_id="template_frame", visible=False, elem_classes="image") | |
image_selection_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track start frame", visible=False) | |
track_pause_number_slider = gr.Slider(minimum=1, maximum=100, step=1, value=1, label="Track end frame", visible=False) | |
with gr.Column(scale=2, elem_classes="jc_center"): | |
run_status2 = gr.HighlightedText(value=[("",""), ("Try to upload your video and click the Get video info button to get started! (Kindly ensure that the uploaded video consists of fewer than 500 frames in total)", "Normal")], | |
color_map={"Normal": "green", "Error": "red", "Clear clicks": "gray", "Add mask": "green", "Remove mask": "red"}, | |
visible=False) | |
with gr.Column(): | |
point_prompt = gr.Radio( | |
choices=["Positive", "Negative"], | |
value="Positive", | |
label="Point prompt", | |
interactive=True, | |
visible=False, | |
min_width=100, | |
scale=1,) | |
with gr.Row(scale=2, elem_classes="mask_button_group"): | |
Add_mask_button = gr.Button(value="Add mask", interactive=True, visible=False, elem_classes="add_button") | |
remove_mask_button = gr.Button(value="Remove mask", interactive=True, visible=False, elem_classes="remove_button") | |
clear_button_click = gr.Button(value="Clear clicks", interactive=True, visible=False, elem_classes="clear_button") | |
mask_dropdown = gr.Dropdown(multiselect=True, value=[], label="Mask selection", info=".", visible=False) | |
# output video | |
step3_title = gr.Markdown("---\n## Step3: Track masks and get the inpainting result", visible=False) | |
with gr.Row(equal_height=True): | |
with gr.Column(scale=2): | |
tracking_video_output = gr.Video(visible=False, elem_classes="video") | |
tracking_video_predict_button = gr.Button(value="1. Tracking", visible=False, elem_classes="margin_center") | |
with gr.Column(scale=2): | |
inpaiting_video_output = gr.Video(visible=False, elem_classes="video") | |
inpaint_video_predict_button = gr.Button(value="2. Inpainting", visible=False, elem_classes="margin_center") | |
# first step: get the video information | |
extract_frames_button.click( | |
fn=get_frames_from_video, | |
inputs=[ | |
video_input, video_state | |
], | |
outputs=[video_state, video_info, template_frame, | |
image_selection_slider, track_pause_number_slider,point_prompt, clear_button_click, Add_mask_button, template_frame, | |
tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button, inpaint_video_predict_button, step2_title, step3_title,mask_dropdown, run_status, run_status2] | |
) | |
# second step: select images from slider | |
image_selection_slider.release(fn=select_template, | |
inputs=[image_selection_slider, video_state, interactive_state], | |
outputs=[template_frame, video_state, interactive_state, run_status, run_status2], api_name="select_image") | |
track_pause_number_slider.release(fn=get_end_number, | |
inputs=[track_pause_number_slider, video_state, interactive_state], | |
outputs=[template_frame, interactive_state, run_status, run_status2], api_name="end_image") | |
# click select image to get mask using sam | |
template_frame.select( | |
fn=sam_refine, | |
inputs=[video_state, point_prompt, click_state, interactive_state], | |
outputs=[template_frame, video_state, interactive_state, run_status, run_status2] | |
) | |
# add different mask | |
Add_mask_button.click( | |
fn=add_multi_mask, | |
inputs=[video_state, interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown, template_frame, click_state, run_status, run_status2] | |
) | |
remove_mask_button.click( | |
fn=remove_multi_mask, | |
inputs=[interactive_state, mask_dropdown], | |
outputs=[interactive_state, mask_dropdown, run_status, run_status2] | |
) | |
# tracking video from select image and mask | |
tracking_video_predict_button.click( | |
fn=vos_tracking_video, | |
inputs=[video_state, interactive_state, mask_dropdown], | |
outputs=[tracking_video_output, video_state, interactive_state, run_status, run_status2] | |
) | |
# inpaint video from select image and mask | |
inpaint_video_predict_button.click( | |
fn=inpaint_video, | |
inputs=[video_state, resize_ratio_number, dilate_radius_number, raft_iter_number, subvideo_length_number, neighbor_length_number, ref_stride_number, mask_dropdown], | |
outputs=[inpaiting_video_output, run_status, run_status2] | |
) | |
# click to get mask | |
mask_dropdown.change( | |
fn=show_mask, | |
inputs=[video_state, interactive_state, mask_dropdown], | |
outputs=[template_frame, run_status, run_status2] | |
) | |
# clear input | |
video_input.change( | |
fn=restart, | |
inputs=[], | |
outputs=[ | |
video_state, | |
interactive_state, | |
click_state, | |
tracking_video_output, inpaiting_video_output, | |
template_frame, | |
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, | |
Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2 | |
], | |
queue=False, | |
show_progress=False) | |
video_input.clear( | |
fn=restart, | |
inputs=[], | |
outputs=[ | |
video_state, | |
interactive_state, | |
click_state, | |
tracking_video_output, inpaiting_video_output, | |
template_frame, | |
tracking_video_predict_button, image_selection_slider , track_pause_number_slider,point_prompt, clear_button_click, | |
Add_mask_button, template_frame, tracking_video_predict_button, tracking_video_output, inpaiting_video_output, remove_mask_button,inpaint_video_predict_button, step2_title, step3_title, mask_dropdown, video_info, run_status, run_status2 | |
], | |
queue=False, | |
show_progress=False) | |
# points clear | |
clear_button_click.click( | |
fn = clear_click, | |
inputs = [video_state, click_state,], | |
outputs = [template_frame,click_state, run_status, run_status2], | |
) | |
# set example | |
gr.Markdown("## Examples") | |
gr.Examples( | |
examples=[os.path.join(os.path.dirname(__file__), "./test_sample/", test_sample) for test_sample in ["test-sample0.mp4", "test-sample1.mp4", "test-sample2.mp4", "test-sample3.mp4", "test-sample4.mp4"]], | |
inputs=[video_input], | |
) | |
gr.Markdown(article) | |
iface.queue(concurrency_count=1) | |
iface.launch(debug=True) |