Spaces:
Running
on
A10G
Running
on
A10G
import time | |
import torch | |
import cv2 | |
from PIL import Image, ImageDraw, ImageOps | |
import numpy as np | |
from typing import Union | |
from segment_anything import sam_model_registry, SamPredictor, SamAutomaticMaskGenerator | |
import matplotlib.pyplot as plt | |
import PIL | |
from .mask_painter import mask_painter | |
class BaseSegmenter: | |
def __init__(self, SAM_checkpoint, model_type, device='cuda:0'): | |
""" | |
device: model device | |
SAM_checkpoint: path of SAM checkpoint | |
model_type: vit_b, vit_l, vit_h | |
""" | |
print(f"Initializing BaseSegmenter to {device}") | |
assert model_type in ['vit_b', 'vit_l', 'vit_h'], 'model_type must be vit_b, vit_l, or vit_h' | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.model = sam_model_registry[model_type](checkpoint=SAM_checkpoint) | |
self.model.to(device=self.device) | |
self.predictor = SamPredictor(self.model) | |
self.embedded = False | |
def set_image(self, image: np.ndarray): | |
# PIL.open(image_path) 3channel: RGB | |
# image embedding: avoid encode the same image multiple times | |
self.orignal_image = image | |
if self.embedded: | |
print('repeat embedding, please reset_image.') | |
return | |
self.predictor.set_image(image) | |
self.embedded = True | |
return | |
def reset_image(self): | |
# reset image embeding | |
self.predictor.reset_image() | |
self.embedded = False | |
def predict(self, prompts, mode, multimask=True): | |
""" | |
image: numpy array, h, w, 3 | |
prompts: dictionary, 3 keys: 'point_coords', 'point_labels', 'mask_input' | |
prompts['point_coords']: numpy array [N,2] | |
prompts['point_labels']: numpy array [1,N] | |
prompts['mask_input']: numpy array [1,256,256] | |
mode: 'point' (points only), 'mask' (mask only), 'both' (consider both) | |
mask_outputs: True (return 3 masks), False (return 1 mask only) | |
whem mask_outputs=True, mask_input=logits[np.argmax(scores), :, :][None, :, :] | |
""" | |
assert self.embedded, 'prediction is called before set_image (feature embedding).' | |
assert mode in ['point', 'mask', 'both'], 'mode must be point, mask, or both' | |
if mode == 'point': | |
masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'], | |
point_labels=prompts['point_labels'], | |
multimask_output=multimask) | |
elif mode == 'mask': | |
masks, scores, logits = self.predictor.predict(mask_input=prompts['mask_input'], | |
multimask_output=multimask) | |
elif mode == 'both': # both | |
masks, scores, logits = self.predictor.predict(point_coords=prompts['point_coords'], | |
point_labels=prompts['point_labels'], | |
mask_input=prompts['mask_input'], | |
multimask_output=multimask) | |
else: | |
raise("Not implement now!") | |
# masks (n, h, w), scores (n,), logits (n, 256, 256) | |
return masks, scores, logits | |
if __name__ == "__main__": | |
# load and show an image | |
image = cv2.imread('/hhd3/gaoshang/truck.jpg') | |
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # numpy array (h, w, 3) | |
# initialise BaseSegmenter | |
SAM_checkpoint= '/ssd1/gaomingqi/checkpoints/sam_vit_h_4b8939.pth' | |
model_type = 'vit_h' | |
device = "cuda:4" | |
base_segmenter = BaseSegmenter(SAM_checkpoint=SAM_checkpoint, model_type=model_type, device=device) | |
# image embedding (once embedded, multiple prompts can be applied) | |
base_segmenter.set_image(image) | |
# examples | |
# point only ------------------------ | |
mode = 'point' | |
prompts = { | |
'point_coords': np.array([[500, 375], [1125, 625]]), | |
'point_labels': np.array([1, 1]), | |
} | |
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=False) # masks (n, h, w), scores (n,), logits (n, 256, 256) | |
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) | |
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3) | |
cv2.imwrite('/hhd3/gaoshang/truck_point.jpg', painted_image) | |
# both ------------------------ | |
mode = 'both' | |
mask_input = logits[np.argmax(scores), :, :] | |
prompts = {'mask_input': mask_input [None, :, :]} | |
prompts = { | |
'point_coords': np.array([[500, 375], [1125, 625]]), | |
'point_labels': np.array([1, 0]), | |
'mask_input': mask_input[None, :, :] | |
} | |
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True) # masks (n, h, w), scores (n,), logits (n, 256, 256) | |
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) | |
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3) | |
cv2.imwrite('/hhd3/gaoshang/truck_both.jpg', painted_image) | |
# mask only ------------------------ | |
mode = 'mask' | |
mask_input = logits[np.argmax(scores), :, :] | |
prompts = {'mask_input': mask_input[None, :, :]} | |
masks, scores, logits = base_segmenter.predict(prompts, mode, multimask=True) # masks (n, h, w), scores (n,), logits (n, 256, 256) | |
painted_image = mask_painter(image, masks[np.argmax(scores)].astype('uint8'), background_alpha=0.8) | |
painted_image = cv2.cvtColor(painted_image, cv2.COLOR_RGB2BGR) # numpy array (h, w, 3) | |
cv2.imwrite('/hhd3/gaoshang/truck_mask.jpg', painted_image) | |