mins
initial commit
b443c25
raw
history blame
9.3 kB
import re
from PIL import Image
import torch
import torch.nn as nn
from transformers import AutoModel, CLIPImageProcessor
from PIL import Image
import requests
import torch.nn.functional as F
from transformers import AutoProcessor, Pix2StructVisionModel, Pix2StructProcessor, Pix2StructForConditionalGeneration
cfg={
"crop_size": 256,
"do_center_crop": True,
"do_normalize": True,
"do_resize": True,
"feature_extractor_type": "CLIPFeatureExtractor",
"image_mean": [
0.48145466,
0.4578275,
0.40821073
],
"image_std": [
0.26862954,
0.26130258,
0.27577711
],
"resample": 3,
"size": 256
}
'''
Pixel2Struct-Large Model (pretrained version)
'''
class Pix2StructLargeVisionTower(nn.Module):
def __init__(self, vision_tower, args, delay_load=False):
super().__init__()
self.is_loaded = False
self.vision_tower_name = vision_tower
self.do_resize = args.do_resize
self.de_normalize = args.de_normalize # de-normalize the input image and perform preprocessing with pix2struct processor
self.select_layer = args.mm_vision_select_layer # NOTE: not implemented yet, this parameter has no effect
self.input_image_size = args.input_image_size
self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')
self.freeze_vision = args.freeze_vision
self.args = args
if not self.is_loaded:
self.load_model()
def load_model(self):
if self.is_loaded:
return
whole_model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-large")
self.vision_tower = whole_model.encoder
self.pix2struct_processor = AutoProcessor.from_pretrained("google/pix2struct-large")
self.pix2struct_processor.image_processor.is_vqa = False
self.image_processor = CLIPImageProcessor(**cfg)
if self.input_image_size is not None:
self.image_processor.size=self.input_image_size
self.image_processor.crop_size={
'height':self.input_image_size,
'width': self.input_image_size
}
if self.freeze_vision:
self.vision_tower.requires_grad_(False)
self.image_mean = torch.tensor(self.image_processor.image_mean).view(1, 3, 1, 1)
self.image_std = torch.tensor(self.image_processor.image_std).view(1, 3, 1, 1)
self.is_loaded = True
def feature_select(self, image_forward_outs):
image_features = image_forward_outs.hidden_states[self.select_layer] # [bs, n, c], cls at idx=0
if self.select_feature == 'patch':
image_features = image_features[:, 1:]
elif self.select_feature == 'cls_patch':
image_features = image_features
else:
raise ValueError(f'Unexpected select feature: {self.select_feature}')
return image_features
# @torch.no_grad()
def forward(self, images):
if self.de_normalize:
mean = self.image_mean.clone().view(1, 3, 1, 1).to(dtype=images.dtype, device=images.device)
std = self.image_std.clone().view(1, 3, 1, 1).to(dtype=images.dtype, device=images.device)
x = (images * std + mean) * 255.0
x = self.pix2struct_processor(images=x.float(), return_tensors="pt")
image_features = self.vision_tower(**(x.to(device=self.device, dtype=self.dtype))).last_hidden_state
bs, n, c = image_features.shape
image_features = image_features[:, :2025, :] # HARD CODE
if self.do_resize:
image_features = image_features.transpose(1,2).reshape(bs, c, 45, 45) # HARD CODE
image_features = F.interpolate(image_features.float(), size=(32, 32), mode='bilinear', align_corners=True).to(dtype=image_features.dtype) # HARD CODE
return image_features
else:
return image_features
@property
def dummy_feature(self):
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
@property
def dtype(self):
return next(self.vision_tower.parameters()).dtype
@property
def device(self):
return next(self.vision_tower.parameters()).device
@property
def config(self):
return self.vision_tower.config
@property
def hidden_size(self):
#return self.config.hidden_size
hidden_dim = 1536
return hidden_dim
@property
def num_patches(self):
# return (self.config.image_size // self.config.patch_size) ** 2
return self.config['num_patches']
#main
if __name__ == "__main__":
'''
print('hello')
from PIL import Image
import requests
from transformers import AutoProcessor, Pix2StructVisionModel
model = Pix2StructVisionModel.from_pretrained("google/pix2struct-textcaps-base")
processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-base")
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open("/lustre/fsw/portfolios/llmservice/users/fuxiaol/me.jpg")
for name, param in model.named_parameters():
param.requires_grad = False
#inputs = processor(images=image, return_tensors="pt")
image_processor = CLIPImageProcessor.from_pretrained('OpenGVLab/InternViT-6B-448px-V1-5')
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
pixel_values = torch.cat([pixel_values, pixel_values], dim=0)
#inputs = pixel_values.to(torch.bfloat16)
print('pixel_values:', pixel_values.size())
inputs = processor(images=pixel_values, max_patches=1024, return_tensors='pt')['flattened_patches']
print(inputs.size())
print(inputs.size())
outputs = model(inputs)
print(outputs.last_hidden_state.size())
'''
cfg={
"crop_size": 1024,
"do_center_crop": True,
"do_normalize": True,
"do_resize": True,
"feature_extractor_type": "CLIPFeatureExtractor",
"image_mean": [
0.48145466,
0.4578275,
0.40821073
],
"image_std": [
0.26862954,
0.26130258,
0.27577711
],
"resample": 3,
"size": 1024
}
from PIL import Image
import requests
from transformers import AutoProcessor, Pix2StructForConditionalGeneration
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
import torchvision.transforms as T
processor = AutoProcessor.from_pretrained("google/pix2struct-textcaps-large")
model = Pix2StructForConditionalGeneration.from_pretrained("google/pix2struct-textcaps-large")
#url = "https://www.ilankelman.org/stopsigns/australia.jpg"
#image = Image.open(requests.get(url, stream=True).raw)
image = Image.open("/lustre/fsw/portfolios/llmservice/users/fuxiaol/sample2.jpg")
image_processor= CLIPImageProcessor(**cfg)
pixel_values = image_processor(images=image, return_tensors='pt').pixel_values
print(pixel_values.size())
mean = [0.48145466, 0.4578275, 0.40821073]
std = [0.26862954, 0.26130258, 0.27577711]
mean = torch.tensor(mean).view(1, 3, 1, 1)
std = torch.tensor(std).view(1, 3, 1, 1)
pixel_values = pixel_values * std + mean
print(pixel_values.size())
#pixel_values.save('pix2image.jpg')
transform = T.ToPILImage()
img = transform(pixel_values.squeeze(0))
img.save('pix2image.jpg')
inputs = processor(images=pixel_values, max_patches=1024,return_tensors="pt")['flattened_patches']
# autoregressive generation
generated_ids = model.generate(inputs, max_new_tokens=50)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(generated_text)
#A stop sign is on a street corner.
#A stop sign is on a street corner.
'''
from PIL import Image
import requests
from transformers import AutoProcessor, CLIPModel
from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig
processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
model = CLIPVisionModel.from_pretrained('openai/clip-vit-large-patch14-336')
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
image = Image.open(requests.get(url, stream=True).raw)
print(image)
inputs = processor(images=image, return_tensors="pt")
#image_features = model.get_image_features(**inputs)
outputs = model(**inputs,output_hidden_states=True)
print(outputs.hidden_states[-1].size())
print(outputs.hidden_states[-2].size())
print(outputs.hidden_states[-3].size())
'''
#sequence = processor.batch_decode(outputs, skip_special_tokens=True)[0]
#sequence = processor.post_process_generation(sequence, fix_markdown=False)
# note: we're using repr here such for the sake of printing the \n characters, feel free to just print the sequence
#print(repr(sequence))