Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModel | |
def get_dialogue_history(dialogue_history_list: list): | |
dialogue_history_tmp = [] | |
for item in dialogue_history_list: | |
if item['role'] == 'counselor': | |
text = '咨询师:'+ item['content'] | |
else: | |
text = '来访者:'+ item['content'] | |
dialogue_history_tmp.append(text) | |
dialogue_history = '\n'.join(dialogue_history_tmp) | |
return dialogue_history + '\n' + '咨询师:' | |
def get_instruction(dialogue_history): | |
instruction = f'''现在你扮演一位专业的心理咨询师,你具备丰富的心理学和心理健康知识。你擅长运用多种心理咨询技巧,例如认知行为疗法原则、动机访谈技巧和解决问题导向的短期疗法。以温暖亲切的语气,展现出共情和对来访者感受的深刻理解。以自然的方式与来访者进行对话,避免过长或过短的回应,确保回应流畅且类似人类的对话。提供深层次的指导和洞察,使用具体的心理概念和例子帮助来访者更深入地探索思想和感受。避免教导式的回应,更注重共情和尊重来访者的感受。根据来访者的反馈调整回应,确保回应贴合来访者的情境和需求。请为以下的对话生成一个回复。 | |
对话: | |
{dialogue_history}''' | |
return instruction | |
tokenizer = AutoTokenizer.from_pretrained('qiuhuachuan/MeChat', trust_remote_code=True) | |
model = AutoModel.from_pretrained('qiuhuachuan/MeChat', trust_remote_code=True).half().cuda() | |
model = model.eval() | |
dialogue_history_list = [] | |
while True: | |
usr_msg = input('来访者:') | |
if usr_msg == '0': | |
exit() | |
else: | |
dialogue_history_list.append({ | |
'role': 'client', | |
'content': usr_msg | |
}) | |
dialogue_history = get_dialogue_history(dialogue_history_list=dialogue_history_list) | |
instruction = get_instruction(dialogue_history=dialogue_history) | |
response, history = model.chat(tokenizer, instruction, history=[], temperature=0.8, top_p=0.8) | |
print(f'咨询师:{response}') | |
dialogue_history_list.append({ | |
'role': 'counselor', | |
'content': response | |
}) | |