EditAnything / sketch2image.py
shgao's picture
update new demo
0c7479d
raw
history blame
10.8 kB
# Edit Anything trained with Stable Diffusion + ControlNet + SAM + BLIP2
from diffusers.utils import load_image
from diffusers import UniPCMultistepScheduler
from torchvision.utils import save_image
from PIL import Image
from pytorch_lightning import seed_everything
import subprocess
from collections import OrderedDict
import cv2
import einops
import gradio as gr
import numpy as np
import torch
import random
import os
from annotator.util import resize_image, HWC3
import base64
from io import BytesIO
from utils.stable_diffusion_controlnet import StableDiffusionControlNetPipeline2, ControlNetModel2
def create_demo():
MAX_COLORS = 12
canvas_html = "<div id='canvas-root' style='max-width:400px; margin: 0 auto'></div>"
load_js = """
async () => {
const url = "https://huggingface.co/datasets/radames/gradio-components/raw/main/sketch-canvas.js"
fetch(url)
.then(res => res.text())
.then(text => {
const script = document.createElement('script');
script.type = "module"
script.src = URL.createObjectURL(new Blob([text], { type: 'application/javascript' }));
document.head.appendChild(script);
});
}
"""
get_js_colors = """
async (canvasData) => {
const canvasEl = document.getElementById("canvas-root");
return [canvasEl._data]
}
"""
set_canvas_size = """
async (aspect) => {
if(aspect ==='square'){
_updateCanvas(512,512)
}
if(aspect ==='horizontal'){
_updateCanvas(768,512)
}
if(aspect ==='vertical'){
_updateCanvas(512,768)
}
}
"""
device = "cuda" if torch.cuda.is_available() else "cpu"
# aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio", visible=False if is_shared_ui else True)
# Diffusion init using diffusers.
# diffusers==0.14.0 required.
base_model_path = "stabilityai/stable-diffusion-2-1"
config_dict = OrderedDict([('SAM Pretrained(v0-1)', 'shgao/edit-anything-v0-1-1'),
('LAION Pretrained(v0-3)', 'shgao/edit-anything-v0-3'),
('LAION Pretrained(v0-4)', 'shgao/edit-anything-v0-4-sd21'),
])
def obtain_generation_model(controlnet_path):
controlnet = ControlNetModel2.from_pretrained(
controlnet_path, torch_dtype=torch.float16)
pipe = StableDiffusionControlNetPipeline2.from_pretrained(
base_model_path, controlnet=controlnet, torch_dtype=torch.float16
)
# speed up diffusion process with faster scheduler and memory optimization
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
# remove following line if xformers is not installed
pipe.enable_xformers_memory_efficient_attention()
# pipe.enable_model_cpu_offload() # disable for now because of unknow bug in accelerate
pipe.to(device)
return pipe
global default_controlnet_path
default_controlnet_path = config_dict['LAION Pretrained(v0-4)']
pipe = obtain_generation_model(default_controlnet_path)
def get_sam_control(image):
im2arr = np.array(image)
colors_map, res = None, None
ptr = 0
for color in colors:
r, g, b = color
if any(c != 255 for c in (r, g, b)):
binary_matrix = np.all(im2arr == (r, g, b), axis=-1)
if colors_map is None:
colors_map = np.zeros((im2arr.shape[0], im2arr.shape[1]), dtype=np.uint16)
res = np.zeros((im2arr.shape[0], im2arr.shape[1], 3))
colors_map[binary_matrix != 0] = ptr + 1
ptr += 1
white = np.all(im2arr == (255, 255, 255), axis=-1)
scale_map = (white != 1).astype(np.float32)
res[:, :, 0] = colors_map % 256
res[:, :, 1] = colors_map // 256
res.astype(np.float32)
return image, res, scale_map
def process_sketch(canvas_data):
nonlocal colors
base64_img = canvas_data['image']
image_data = base64.b64decode(base64_img.split(',')[1])
image = Image.open(BytesIO(image_data)).convert("RGB")
colors = [tuple(map(int, rgb[4:-1].split(','))) for rgb in canvas_data['colors']]
print(colors)
# binary_matrixes['sketch'] = res
return image, "sketch loaded."
def process(condition_model, input_image, control_scale, prompt, a_prompt, n_prompt,
num_samples, image_resolution, ddim_steps, guess_mode, use_scale_map, strength, scale, seed, eta):
global default_controlnet_path
global pipe
print("To Use:", config_dict[condition_model], "Current:", default_controlnet_path)
if default_controlnet_path != config_dict[condition_model]:
print("Change condition model to:", config_dict[condition_model])
pipe = obtain_generation_model(config_dict[condition_model])
default_controlnet_path = config_dict[condition_model]
with torch.no_grad():
print("All text:", prompt)
input_image = HWC3(input_image)
img = resize_image(input_image, image_resolution)
H, W, C = img.shape
# the default SAM model is trained with 1024 size.
fullseg, detected_map, scale_map = get_sam_control(input_image)
detected_map = HWC3(detected_map.astype(np.uint8))
detected_map = cv2.resize(
detected_map, (W, H), interpolation=cv2.INTER_LINEAR)
control = torch.from_numpy(
detected_map.copy()).float().cuda()
control = torch.stack([control for _ in range(num_samples)], dim=0)
control = einops.rearrange(control, 'b h w c -> b c h w').clone()
scale_map = torch.from_numpy(scale_map).float().cuda() if use_scale_map else None
if seed == -1:
seed = random.randint(0, 65535)
seed_everything(seed)
print("control.shape", control.shape)
generator = torch.manual_seed(seed)
x_samples = pipe(
prompt=[prompt + ', ' + a_prompt] * num_samples,
negative_prompt=[n_prompt] * num_samples,
num_images_per_prompt=num_samples,
num_inference_steps=ddim_steps,
generator=generator,
height=H,
width=W,
controlnet_conditioning_scale=float(control_scale),
controlnet_conditioning_scale_map=scale_map,
image=control.type(torch.float16),
).images
results = [x_samples[i] for i in range(num_samples)]
return [fullseg] + results, prompt, "waiting for sketch..."
# disable gradio when not using GUI.
block = gr.Blocks()
with block as demo:
colors = []
with gr.Row():
gr.Markdown(
"## Generate Anything")
with gr.Row():
with gr.Column():
canvas_data = gr.JSON(value={}, visible=False)
canvas = gr.HTML(canvas_html)
aspect = gr.Radio(["square", "horizontal", "vertical"], value="square", label="Aspect Ratio",
visible=False)
button_run = gr.Button("I've finished my sketch", elem_id="main_button", interactive=True)
result_text1 = gr.Text(label='sketch status:')
with gr.Column(visible=True) as post_sketch:
input_image = gr.Image(type="numpy", visible=False)
prompt = gr.Textbox(label="Prompt (Optional)")
run_button = gr.Button(label="Run")
condition_model = gr.Dropdown(choices=list(config_dict.keys()),
value=list(config_dict.keys())[0],
label='Model',
multiselect=False)
control_scale = gr.Slider(
label="Mask Align strength", info="Large value -> strict alignment with SAM mask", minimum=0,
maximum=1, value=1, step=0.1)
num_samples = gr.Slider(
label="Images", minimum=1, maximum=12, value=1, step=1)
# enable_auto_prompt = True
with gr.Accordion("Advanced options", open=False):
image_resolution = gr.Slider(
label="Image Resolution", minimum=256, maximum=768, value=512, step=64)
strength = gr.Slider(
label="Control Strength", minimum=0.0, maximum=2.0, value=1.0, step=0.01)
guess_mode = gr.Checkbox(label='Guess Mode', value=False)
use_scale_map = gr.Checkbox(label='Use scale map', value=False)
ddim_steps = gr.Slider(
label="Steps", minimum=1, maximum=100, value=20, step=1)
scale = gr.Slider(
label="Guidance Scale", minimum=0.1, maximum=30.0, value=9.0, step=0.1)
seed = gr.Slider(label="Seed", minimum=-1,
maximum=2147483647, step=1, randomize=True)
eta = gr.Number(label="eta (DDIM)", value=0.0)
a_prompt = gr.Textbox(
label="Added Prompt", value='best quality, extremely detailed')
n_prompt = gr.Textbox(label="Negative Prompt",
value='longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality')
with gr.Column():
result_gallery = gr.Gallery(
label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
result_text = gr.Text(label='BLIP2+Human Prompt Text')
aspect.change(None, inputs=[aspect], outputs=None, _js=set_canvas_size)
button_run.click(process_sketch, inputs=[canvas_data],
outputs=[input_image, result_text1], _js=get_js_colors, queue=False)
ips = [condition_model, input_image, control_scale, prompt, a_prompt, n_prompt,
num_samples, image_resolution, ddim_steps, guess_mode, use_scale_map, strength, scale, seed, eta]
run_button.click(fn=process, inputs=ips, outputs=[result_gallery, result_text, result_text1])
demo.load(None, None, None, _js=load_js)
return demo
if __name__ == '__main__':
demo = create_demo()
demo.queue().launch(server_name='0.0.0.0', share=True)