Spaces:
Sleeping
Sleeping
#!/usr/bin/env python | |
# coding: utf-8 | |
import gradio as gr | |
import pandas as pd | |
from sentence_transformers import SentenceTransformer, util | |
import torch | |
import openai # New import for Whisper API | |
# 載入語義搜索模型 | |
model_checkpoint = "sickcell69/cti-semantic-search-minilm" | |
#model_checkpoint = "sickcell69/bert-finetuned-ner" | |
model = SentenceTransformer(model_checkpoint) | |
# 載入數據 | |
data_path = 'labeled_cti_data.json' | |
data = pd.read_json(data_path) | |
# 載入嵌入文件 | |
embeddings_path = 'corpus_embeddings.pt' | |
corpus_embeddings = torch.load(embeddings_path) | |
def semantic_search(query): | |
query_embedding = model.encode(query, convert_to_tensor=True) | |
search_hits = util.semantic_search(query_embedding, corpus_embeddings, top_k=5) | |
results = [] | |
for hit in search_hits[0]: | |
text = " ".join(data.iloc[hit['corpus_id']]['tokens']) | |
results.append(f"Score: {hit['score']:.4f} - Text: {text}") | |
return "\n".join(results) | |
# New function to transcribe audio using Whisper API | |
def transcribe_audio(audio_file): | |
audio_bytes = audio_file.read() | |
response = openai.Audio.transcribe("whisper-1", audio_bytes) | |
return response['text'] | |
# Modified interface to include audio input | |
iface = gr.Interface( | |
fn=semantic_search, | |
inputs=["text", "file"], # Add audio file input | |
outputs="text", | |
title="語義搜索應用", | |
description="輸入一個查詢或上傳一個音頻文件,然後模型將返回最相似的結果。", | |
examples=["example_audio.wav"] # Example audio file | |
) | |
# New function to handle both text and audio inputs | |
def handle_input(input_text, audio_file): | |
if audio_file is not None: | |
input_text = transcribe_audio(audio_file) | |
return semantic_search(input_text) | |
if __name__ == "__main__": | |
#iface.launch() | |
iface.launch(share=True) #網頁跑不出來 | |