File size: 12,027 Bytes
2f50c94 b6a2224 37185e0 6c7c3ab 37185e0 6c7c3ab 37185e0 0c3b71f 41f95b2 0707373 41f95b2 0707373 e50fdf4 37185e0 0c3b71f b6a2224 e7bb3db b6a2224 0c3b71f b6a2224 e7bb3db 0c3b71f b6a2224 e7bb3db 0c3b71f e7bb3db 0c3b71f e7bb3db 0c3b71f 6c7c3ab bd877a9 e7bb3db 0c3b71f e7bb3db e50fdf4 0c3b71f e7bb3db 0c3b71f e7bb3db 0c3b71f e7bb3db 0c3b71f e50fdf4 9a87223 e50fdf4 9a87223 e50fdf4 6c7c3ab 0707373 afb9ec0 ab5ba21 0707373 bd877a9 ab5ba21 bd877a9 6c7c3ab e50fdf4 9914a2b e50fdf4 9914a2b e50fdf4 0707373 e50fdf4 4a2f000 6c7c3ab 0707373 6c7c3ab e50fdf4 bc40ada 0707373 e50fdf4 ebcf536 e50fdf4 bc40ada 41f95b2 6c7c3ab 0707373 e50fdf4 6c7c3ab e50fdf4 6c7c3ab e50fdf4 6c7c3ab 7ea79b0 6c7c3ab 7ea79b0 ebcf536 7ea79b0 0c3b71f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import gradio as gr
import requests
import os
from openai import OpenAI
# Initialize the NVIDIA LLM client
client = OpenAI(
base_url="https://integrate.api.nvidia.com/v1",
api_key=os.getenv("NVIDIA_API_KEY") # Use your NVIDIA API key
)
class AutonomousEmailAgent:
def __init__(self, linkedin_url, company_name, role, word_limit, user_name, email, phone, linkedin):
self.linkedin_url = linkedin_url
self.company_name = company_name
self.role = role
self.word_limit = word_limit
self.user_name = user_name
self.email = email
self.phone = phone
self.linkedin = linkedin
self.bio = None
self.skills = []
self.experiences = []
self.company_info = None
self.role_description = None
self.company_url = None # Add company URL for scraping
# Reason and Act via LLM: Let the LLM control reasoning and actions dynamically
def autonomous_reasoning(self):
print("Autonomous Reasoning: Letting the LLM fully reason and act on available data...")
# Modify LLM reasoning prompt to ask for clear, structured instructions
reasoning_prompt = f"""
You are an autonomous agent responsible for generating a job application email.
Here’s the current data:
- LinkedIn profile: {self.linkedin_url}
- Company Name: {self.company_name}
- Role: {self.role}
- Candidate's Bio: {self.bio}
- Candidate's Skills: {', '.join(self.skills)}
- Candidate's Experiences: {', '.join([exp['title'] for exp in self.experiences])}
- Company Information: {self.company_info}
- Role Description: {self.role_description}
Based on this data, decide if it is sufficient to generate the email. If some information is missing or insufficient, respond with:
1. "scrape" to fetch more data from the company website.
2. "generate_email" to proceed with the email generation.
3. "fallback" to use default values.
After generating the email, reflect on whether the content aligns with the role and company and whether any improvements are needed. Respond clearly with one of the above options.
"""
# Send the reasoning prompt to the LLM
completion = client.chat.completions.create(
model="nvidia/llama-3.1-nemotron-70b-instruct",
messages=[{"role": "user", "content": reasoning_prompt}],
temperature=0.5,
top_p=1,
max_tokens=1024,
stream=True
)
reasoning_output = ""
for chunk in completion:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
reasoning_output += chunk.choices[0].delta.content
return self.act_on_llm_instructions(reasoning_output)
# Function to act on the LLM's structured instructions
def act_on_llm_instructions(self, reasoning_output):
instruction = reasoning_output.lower().strip()
if "scrape" in instruction:
self.fetch_company_url()
if self.company_url:
self.fetch_company_info_with_firecrawl(self.company_url)
return self.autonomous_reasoning()
elif "generate_email" in instruction:
return self.generate_email()
elif "fallback" in instruction:
print("Action: Using fallback values for missing data.")
if not self.company_info:
self.company_info = "A leading company in its field."
if not self.role_description:
self.role_description = f"The role of {self.role} involves leadership and team management."
return self.generate_email()
else:
print("Error: Unrecognized instruction from LLM. Proceeding with available data.")
return self.generate_email()
# Fetch company URL using SERP API
def fetch_company_url(self):
serp_api_key = os.getenv("SERP_API_KEY") # Fetch the SERP API key from the environment
print(f"Fetching company URL for {self.company_name} using SERP API...")
serp_url = f"https://serpapi.com/search.json?q={self.company_name}&api_key={serp_api_key}&num=1"
response = requests.get(serp_url)
if response.status_code == 200:
serp_data = response.json()
if 'organic_results' in serp_data and len(serp_data['organic_results']) > 0:
self.company_url = serp_data['organic_results'][0]['link']
print(f"Found company URL: {self.company_url}")
else:
print("No URL found for the company via SERP API.")
self.company_url = None
else:
print(f"Error fetching company URL: {response.status_code}")
self.company_url = None
# Fetch LinkedIn data via Proxycurl
def fetch_linkedin_data(self):
proxycurl_api_key = os.getenv("PROXYCURL_API_KEY") # Fetch API key from environment
if not self.linkedin_url:
print("Action: No LinkedIn URL provided, using default bio.")
self.bio = "A professional with diverse experience."
self.skills = ["Adaptable", "Hardworking"]
self.experiences = ["Worked across various industries"]
else:
print("Action: Fetching LinkedIn data via Proxycurl.")
headers = {"Authorization": f"Bearer {proxycurl_api_key}"}
url = f"https://nubela.co/proxycurl/api/v2/linkedin?url={self.linkedin_url}"
response = requests.get(url, headers=headers)
if response.status_code == 200:
data = response.json()
self.bio = data.get("summary", "No bio available")
self.skills = data.get("skills", [])
self.experiences = data.get("experiences", [])
else:
print("Error: Unable to fetch LinkedIn profile. Using default bio.")
self.bio = "A professional with diverse experience."
self.skills = ["Adaptable", "Hardworking"]
self.experiences = ["Worked across various industries"]
# Fetch company information via Firecrawl API using company URL
def fetch_company_info_with_firecrawl(self, company_url):
firecrawl_api_key = os.getenv("FIRECRAWL_API_KEY") # Fetch the Firecrawl API key from the environment
print(f"Fetching company info for {company_url} using Firecrawl.")
headers = {"Authorization": f"Bearer {firecrawl_api_key}"}
firecrawl_url = "https://api.firecrawl.dev/v1/scrape"
data = {
"url": company_url,
"patterns": ["description", "about", "careers", "company overview"]
}
response = requests.post(firecrawl_url, json=data, headers=headers)
if response.status_code == 200:
firecrawl_data = response.json()
self.company_info = firecrawl_data.get("description", "No detailed company info available.")
print(f"Company info fetched: {self.company_info}")
else:
print(f"Error: Unable to fetch company info via Firecrawl. Using default info.")
self.company_info = "A leading company in its field."
# Final Action: Generate the email using NVIDIA LLM with "Start with Why" framework
def generate_email(self):
print("Action: Generating the email using NVIDIA LLM with the gathered information.")
linkedin_text = f"Please find my LinkedIn profile at {self.linkedin}" if self.linkedin else ""
prompt = f"""
Write a professional job application email applying for the {self.role} position at {self.company_name}.
The email should follow the "Start with Why" approach:
1. **Why**: Begin with the candidate’s **purpose** or **belief**—why they are passionate about this role and the company. What motivates them to apply for this role? Connect their personal mission to the company's values, mission, or goals.
2. **How**: Explain how the candidate’s skills, experience, and approach align with both their "why" and the company’s mission. This should show how they are uniquely qualified to contribute to the company’s success.
3. **What**: Provide concrete examples of the candidate’s past achievements that support their qualifications for this role. These examples should demonstrate the candidate’s ability to succeed based on their skills and experience.
4. **Call to Action**: End with a polite request for a meeting or further discussion to explore how the candidate can contribute to the company's success.
Use the following information to craft the email:
- The candidate’s LinkedIn bio: {self.bio}.
- The candidate’s most relevant skills: {', '.join(self.skills)}.
- The candidate’s professional experience: {', '.join([exp['title'] for exp in self.experiences])}.
- Company information: {self.company_info}.
- Role description: {self.role_description}.
End the email with this signature:
Best regards,
{self.user_name}
Email: {self.email}
Phone: {self.phone}
LinkedIn: {self.linkedin}
The email should not exceed {self.word_limit} words.
"""
completion = client.chat.completions.create(
model="nvidia/llama-3.1-nemotron-70b-instruct",
messages=[{"role": "user", "content": prompt}],
temperature=0.5,
top_p=1,
max_tokens=1024,
stream=True
)
generated_email = ""
for chunk in completion:
if chunk.choices[0].delta.content is not None:
print(chunk.choices[0].delta.content, end="")
generated_email += chunk.choices[0].delta.content
return generated_email
# Main loop following ReAct pattern
def run(self):
self.fetch_linkedin_data() # Fetch LinkedIn data
return self.autonomous_reasoning() # Let the LLM autonomously decide and act
# Define the Gradio interface and the main app logic
def gradio_ui():
# Input fields
name_input = gr.Textbox(label="Your Name", placeholder="Enter your name")
company_input = gr.Textbox(label="Company Name or URL", placeholder="Enter the company name or website URL")
role_input = gr.Textbox(label="Role Applying For", placeholder="Enter the role you are applying for")
email_input = gr.Textbox(label="Your Email Address", placeholder="Enter your email address")
phone_input = gr.Textbox(label="Your Phone Number", placeholder="Enter your phone number")
linkedin_input = gr.Textbox(label="Your LinkedIn URL", placeholder="Enter your LinkedIn profile URL")
word_limit_slider = gr.Slider(minimum=50, maximum=300, step=10, label="Email Word Limit", value=150)
# Output field
email_output = gr.Textbox(label="Generated Email", placeholder="Your generated email will appear here", lines=10)
# Function to create and run the email agent
def create_email(name, company_name, role, email, phone, linkedin_url, word_limit):
agent = AutonomousEmailAgent(linkedin_url, company_name, role, word_limit, name, email, phone, linkedin_url)
return agent.run()
# Gradio interface
demo = gr.Interface(
fn=create_email,
inputs=[name_input, company_input, role_input, email_input, phone_input, linkedin_input, word_limit_slider],
outputs=[email_output],
title="Email Writing AI Agent with ReAct",
description="Generate a professional email for a job application using LinkedIn data, company info, and role description.",
allow_flagging="never"
)
# Launch the Gradio app
demo.launch()
# Start the Gradio app when running the script
if __name__ == "__main__":
gradio_ui()
|