File size: 18,999 Bytes
a05ef67
 
 
 
 
 
 
 
 
 
 
e38903d
 
a05ef67
 
 
 
 
 
 
 
 
 
e38903d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05ef67
 
 
 
 
 
 
e38903d
a05ef67
e38903d
 
 
 
 
a05ef67
 
 
 
 
 
 
e38903d
 
 
 
a05ef67
 
 
 
 
 
 
 
 
e38903d
 
 
 
a05ef67
 
 
 
 
e38903d
 
 
e2d6896
e38903d
 
e2d6896
e38903d
e2d6896
e38903d
 
e2d6896
e38903d
 
 
 
 
 
 
 
a05ef67
 
 
 
 
e38903d
a05ef67
 
 
 
 
 
 
 
e38903d
a05ef67
 
 
 
 
 
 
 
e38903d
a05ef67
 
e38903d
a05ef67
e38903d
a05ef67
 
 
 
e38903d
 
 
a05ef67
 
 
 
 
 
 
 
 
 
e38903d
 
 
a05ef67
 
 
 
 
 
 
 
 
 
 
e38903d
a05ef67
e38903d
a05ef67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38903d
a05ef67
 
 
 
 
 
 
 
 
 
 
e38903d
a05ef67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38903d
a05ef67
 
 
 
 
e38903d
 
 
 
 
 
 
 
a05ef67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e38903d
a05ef67
 
 
 
 
 
e38903d
a05ef67
e38903d
a05ef67
e38903d
a05ef67
 
 
 
e38903d
a05ef67
e38903d
 
 
 
a05ef67
e38903d
a05ef67
 
e38903d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05ef67
 
 
e38903d
 
a05ef67
596562c
a05ef67
e38903d
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
# -*- coding: utf-8 -*-
"""With os FASHION-EYE_VITON-HD Integrated Full Model Final.ipynb

Automatically generated by Colaboratory.
"""

# !rm -rf sample_data
# !rm -rf fashion-eye-try-on/

BASE_DIR = "/home/user/app/fashion-eye-try-on"

import os
os.system(f"git clone https://huggingface.co/spaces/sidharthism/fashion-eye-try-on {BASE_DIR}")

# !pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
# !pip install -r /content/fashion-eye-try-on/requirements.txt
os.system("pip install torch>=1.6.0 torchvision -f https://download.pytorch.org/whl/cu92/torch_stable.html")
os.system("pip install opencv-python torchgeometry gdown Pillow")

os.system(f"cd {BASE_DIR}")

# Download and save checkpoints for cloth mask generation
os.system(f"rm -rf {BASE_DIR}/cloth_segmentation/checkpoints/")
os.system(f"gdown --id 1mhF3yqd7R-Uje092eypktNl-RoZNuiCJ -O {BASE_DIR}/cloth_segmentation/checkpoints/")

os.system(f"git clone https://github.com/shadow2496/VITON-HD {BASE_DIR}/VITON-HD")

#checkpoints
os.system(f"gdown 1RM4OthSM6V4r7kWCu8SbPIPY14Oz8B2u -O {BASE_DIR}/VITON-HD/checkpoints/alias_final.pth")
os.system(f"gdown 1MBHBddaAs7sy8W40jzLmNL83AUh035F1 -O {BASE_DIR}/VITON-HD/checkpoints/gmm_final.pth")
os.system(f"gdown 1MBHBddaAs7sy8W40jzLmNL83AUh035F1 -O {BASE_DIR}/VITON-HD/checkpoints/gmm_final.pth")
os.system(f"gdown 17U1sooR3mVIbe8a7rZuFIF3kukPchHfZ -O {BASE_DIR}/VITON-HD/checkpoints/seg_final.pth")
#test data
os.system(f"gdown 1ncEHn_6liOot8sgt3A2DOFJBffvx8tW8 -O {BASE_DIR}/VITON-HD/datasets/test_pairs.txt")
os.system(f"gdown 1ZA2C8yMOprwc0TV4hvrt0X-ljZugrClq -O {BASE_DIR}/VITON-HD/datasets/test.zip")

os.system(f"unzip {BASE_DIR}/VITON-HD/datasets/test.zip -d {BASE_DIR}/VITON-HD/datasets/")

#@title To clear all the already existing test data
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/image
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/image-parse
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/cloth
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/openpose-img
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/openpose-json

"""Paddle



"""

os.system(f"git clone https://huggingface.co/spaces/sidharthism/pipeline_paddle {BASE_DIR}/pipeline_paddle")

# Required for paddle and gradio (Jinja2 dependency)
os.system("pip install paddlepaddle-gpu pymatting")
os.system(f"pip install -r {BASE_DIR}/pipeline_paddle/requirements.txt")

os.system(f"rm -rf {BASE_DIR}/pipeline_paddle/models")
if not os.path.exists(f"{BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams"):
  if not os.path.exists(f"{BASE_DIR}/pipeline_paddle/models"):
      os.mkdir(f"{BASE_DIR}/pipeline_paddle/models")
  os.system(f"wget https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_1024.pdparams -O {BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams")
  # !wget "https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz" -O "/content/fashion-eye-try-on/pipeline_paddle/models/hrnet_w18_ssld.tar.gz"

"""Initialization

Pose estimator - open pose
"""

# Clone openpose model repo
# os.system(f"git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose.git {BASE_DIR}/openpose")

#@ Building and Installation of openpose model
import os
import subprocess
from os.path import exists, join, basename, splitext


project_name = f"{BASE_DIR}/openpose"
print(project_name)
if not exists(project_name):
  # see: https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/949
  # install new CMake becaue of CUDA10
  os.system(f"wget -q https://cmake.org/files/v3.13/cmake-3.13.0-Linux-x86_64.tar.gz")
  os.system(f"sudo tar xfz cmake-3.13.0-Linux-x86_64.tar.gz --strip-components=1 -C /usr/local")
  # clone openpose
  os.system(f"cd {BASE_DIR} && git clone -q --depth 1 https://github.com/CMU-Perceptual-Computing-Lab/openpose.git")
  os.system("sudo sed -i 's/execute_process(COMMAND git checkout master WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}\/3rdparty\/caffe)/execute_process(COMMAND git checkout f019d0dfe86f49d1140961f8c7dec22130c83154 WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}\/3rdparty\/caffe)/g' %s/openpose/CMakeLists.txt" % (BASE_DIR, ))
  # install system dependencies
  os.system("sudo apt-get -qq install -y libatlas-base-dev libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler libgflags-dev libgoogle-glog-dev liblmdb-dev opencl-headers ocl-icd-opencl-dev libviennacl-dev")
  # build openpose
  print("Building openpose ... May take nearly 15 mins to build ...")
  os.system(f"sudo cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`")
  print("Openpose successfully build and installed.")
  # subprocess.Popen(f"cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`")
  # subprocess.call(["cd", f"{BASE_DIR}/openpose"])
  # subprocess.check_output(["rm", "-rf", f"{BASE_DIR}/openpose/build || true"])
  # subprocess.check_output(["mkdir", f"{BASE_DIR}/openpose/build"])
  # subprocess.check_output(["cd", f"{BASE_DIR}/openpose/build"])
  # subprocess.check_output(["cmake", ".."])
  # subprocess.check_output(["make","-j`nproc`"])

# !cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`

"""Self correction human parsing"""

os.system(f"git clone https://github.com/PeikeLi/Self-Correction-Human-Parsing.git {BASE_DIR}/human_parse")

os.system(f"cd {BASE_DIR}/human_parse")
os.system(f"mkdir {BASE_DIR}/human_parse/checkpoints")
# !mkdir inputs
# !mkdir outputs

dataset = 'lip'

import gdown

dataset_url = 'https://drive.google.com/uc?id=1k4dllHpu0bdx38J7H28rVVLpU-kOHmnH'
output = f'{BASE_DIR}/human_parse/checkpoints/final.pth'
gdown.download(dataset_url, output, quiet=False)

# For human parse
os.system("pip install ninja")

"""Preprocessing


"""

# png to jpg
def convert_to_jpg(path):
    from PIL import Image
    import os
    if os.path.exists(path):
      cl = Image.open(path)
      jpg_path = path[:-4] + ".jpg"
      cl.save(jpg_path)

def resize_img(path):
    from PIL import Image
    print(path)
    im = Image.open(path)
    im = im.resize((768, 1024), Image.BICUBIC)
    im.save(path)

def remove_ipynb_checkpoints():
    import os
    os.system(f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/image/.ipynb_checkpoints")
    os.system(f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/cloth/.ipynb_checkpoints")
    os.system(f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/cloth-mask/.ipynb_checkpoints")

# os.chdir('/content/fashion-eye-try-on')
def preprocess():
    remove_ipynb_checkpoints()
    for path in os.listdir(f'{BASE_DIR}/VITON-HD/datasets/test/image/'):
        resize_img(f'{BASE_DIR}/VITON-HD/datasets/test/image/{path}')
    for path in os.listdir(f'{BASE_DIR}/VITON-HD/datasets/test/cloth/'):
        resize_img(f'{BASE_DIR}/VITON-HD/datasets/test/cloth/{path}')
    # for path in os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask/'):
    #   resize_img(f'/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask/{path}')

"""Paddle - removing background

"""

# PPMatting hrnet 1024
# --fg_estimate True - for higher quality output but slower prediction
def upload_remove_background_and_save_person_image(person_img):
    # !export CUDA_VISIBLE_DEVICES=0
    person_img = person_img.resize((768, 1024), Image.BICUBIC)
    if os.path.exists(f"{BASE_DIR}/pipeline_paddle/image/person.jpg"):
        os.remove(f"{BASE_DIR}/pipeline_paddle/image/person.jpg")
    person_img.save(f"{BASE_DIR}/pipeline_paddle/image/person.jpg")
    # resize_img(f'/content/fashion-eye-try-on/pipeline_paddle/image/person.jpg')
    os.system(f"cd {BASE_DIR}/pipeline_paddle/")
    os.system(f"python {BASE_DIR}/pipeline_paddle/bg_replace.py \
        --config {BASE_DIR}/pipeline_paddle/configs/ppmatting/ppmatting-hrnet_w18-human_1024.yml \
        --model_path {BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams \
        --image_path {BASE_DIR}/pipeline_paddle/image/person.jpg \
        --background 'w' \
        --save_dir {BASE_DIR}/VITON-HD/datasets/test/image \
        --fg_estimate True")
        # --save_dir /content/fashion-eye-try-on/pipeline_paddle/output \
    try:
        convert_to_jpg(f"{BASE_DIR}/VITON-HD/datasets/test/image/person.png")
        # os.remove("/content/fashion-eye-try-on/pipeline_paddle/output/person_alpha.png")
        os.remove(f"{BASE_DIR}/VITON-HD/datasets/test/image/person_alpha.png")
        # os.remove("/content/fashion-eye-try-on/pipeline_paddle/output/person_rgba.png")
        os.remove(f"{BASE_DIR}/VITON-HD/datasets/test/image/person_rgba.png")
        os.system(f"cd {BASE_DIR}")
    except Exception as e:
        print(e)
        os.system(f"cd {BASE_DIR}")

#@title If multiple GPU available,uncomment and try this code
os.system("export CUDA_VISIBLE_DEVICES=0")

# Openpose pose estimation
# Ubuntu and Mac
def estimate_pose():
    os.system(f"cd {BASE_DIR}/openpose && ./build/examples/openpose/openpose.bin --image_dir {BASE_DIR}/VITON-HD/datasets/test/image --write_json {BASE_DIR}/VITON-HD/datasets/test/openpose-json/ --display 0 --face --hand --render_pose 0")
    os.system(f"cd {BASE_DIR}/openpose && ./build/examples/openpose/openpose.bin --image_dir {BASE_DIR}/VITON-HD/datasets/test/image --write_images {BASE_DIR}/VITON-HD/datasets/test/openpose-img/ --display 0 --hand --render_pose 1 --disable_blending true")
    os.system(f"cd {BASE_DIR}")
    # !cd /content/fashion-eye-try-on/openpose && ./build/examples/openpose/openpose.bin --image_dir /content/fashion-eye-try-on/pipeline_paddle/output/ --write_images /content/fashion-eye-try-on/openpose_img/ --display 0 --hand --render_pose 1 --disable_blending true

# Run self correction human parser
# !python3 /content/fashion-eye-try-on/human_parse/simple_extractor.py --dataset 'lip' --model-restore '/content/fashion-eye-try-on/human_parse/checkpoints/final.pth' --input-dir '/content/fashion-eye-try-on/image' --output-dir '/content/fashion-eye-try-on/VITON-HD/datasets/test/image-parse'
def generate_human_segmentation_map():
    # remove_ipynb_checkpoints()
    os.system(f"python3 {BASE_DIR}/human_parse/simple_extractor.py --dataset 'lip' --model-restore '{BASE_DIR}/human_parse/checkpoints/final.pth' --input-dir '{BASE_DIR}/VITON-HD/datasets/test/image' --output-dir '{BASE_DIR}/VITON-HD/datasets/test/image-parse'")

# model_image = os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/image')
# cloth_image = os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth')
# pairs = zip(model_image, cloth_image)

# with open('/content/fashion-eye-try-on/VITON-HD/datasets/test_pairs.txt', 'w') as file:
#     for model, cloth in pairs:
#         file.write(f"{model} {cloth}\n")
def generate_test_pairs_txt():
    with open(f"{BASE_DIR}/VITON-HD/datasets/test_pairs.txt", 'w') as file:
        file.write(f"person.jpg cloth.jpg\n")

# VITON-HD
# Transfer the cloth to the model
def generate_viton_hd():
    os.system(f"python {BASE_DIR}/VITON-HD/test.py --name output --dataset_list {BASE_DIR}/VITON-HD/datasets/test_pairs.txt  --dataset_dir {BASE_DIR}/VITON-HD/datasets/ --checkpoint_dir {BASE_DIR}/VITON-HD/checkpoints --save_dir {BASE_DIR}/")

import sys
# To resolve ModuleNotFoundError during imports
if BASE_DIR not in sys.path:
    sys.path.append(BASE_DIR)
    sys.path.append(f"{BASE_DIR}/cloth_segmentation")

from cloth_segmentation.networks import U2NET
import torchvision.transforms as transforms
import torch.nn.functional as F
import os
from PIL import Image
from collections import OrderedDict

import torch

device = 'cuda' if torch.cuda.is_available() else "cpu"

if device == 'cuda':
    torch.cuda.empty_cache()

# for hugging face
# BASE_DIR = "/home/path/app"

image_dir = 'cloth'
result_dir = 'cloth_mask'
checkpoint_path = 'cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth'


def load_checkpoint_mgpu(model, checkpoint_path):
    if not os.path.exists(checkpoint_path):
        print("----No checkpoints at given path----")
        return
    model_state_dict = torch.load(
        checkpoint_path, map_location=torch.device("cpu"))
    new_state_dict = OrderedDict()
    for k, v in model_state_dict.items():
        name = k[7:]  # remove `module.`
        new_state_dict[name] = v

    model.load_state_dict(new_state_dict)
    print("----checkpoints loaded from path: {}----".format(checkpoint_path))
    return model


class Normalize_image(object):
    """Normalize given tensor into given mean and standard dev
    Args:
        mean (float): Desired mean to substract from tensors
        std (float): Desired std to divide from tensors
    """

    def __init__(self, mean, std):
        assert isinstance(mean, (float))
        if isinstance(mean, float):
            self.mean = mean

        if isinstance(std, float):
            self.std = std

        self.normalize_1 = transforms.Normalize(self.mean, self.std)
        self.normalize_3 = transforms.Normalize(
            [self.mean] * 3, [self.std] * 3)
        self.normalize_18 = transforms.Normalize(
            [self.mean] * 18, [self.std] * 18)

    def __call__(self, image_tensor):
        if image_tensor.shape[0] == 1:
            return self.normalize_1(image_tensor)

        elif image_tensor.shape[0] == 3:
            return self.normalize_3(image_tensor)

        elif image_tensor.shape[0] == 18:
            return self.normalize_18(image_tensor)

        else:
            assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"


def get_palette(num_cls):
    """ Returns the color map for visualizing the segmentation mask.
    Args:
        num_cls: Number of classes
    Returns:
        The color map
    """
    n = num_cls
    palette = [0] * (n * 3)
    for j in range(0, n):
        lab = j
        palette[j * 3 + 0] = 0
        palette[j * 3 + 1] = 0
        palette[j * 3 + 2] = 0
        i = 0
        while lab:
            palette[j * 3 + 0] = 255
            palette[j * 3 + 1] = 255
            palette[j * 3 + 2] = 255
            # palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
            # palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
            # palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
            i += 1
            lab >>= 3
    return palette


def generate_cloth_mask(img_dir, output_dir, chkpt_dir):
    global image_dir
    global result_dir
    global checkpoint_path
    image_dir = img_dir
    result_dir = output_dir
    checkpoint_path = chkpt_dir
    transforms_list = []
    transforms_list += [transforms.ToTensor()]
    transforms_list += [Normalize_image(0.5, 0.5)]
    transform_rgb = transforms.Compose(transforms_list)

    net = U2NET(in_ch=3, out_ch=4)
    with torch.no_grad():
        net = load_checkpoint_mgpu(net, checkpoint_path)
        net = net.to(device)
        net = net.eval()

        palette = get_palette(4)

        images_list = sorted(os.listdir(image_dir))
        for image_name in images_list:
            img = Image.open(os.path.join(
                image_dir, image_name)).convert('RGB')
            img_size = img.size
            img = img.resize((768, 768), Image.BICUBIC)
            image_tensor = transform_rgb(img)
            image_tensor = torch.unsqueeze(image_tensor, 0)

            output_tensor = net(image_tensor.to(device))
            output_tensor = F.log_softmax(output_tensor[0], dim=1)
            output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
            output_tensor = torch.squeeze(output_tensor, dim=0)
            output_tensor = torch.squeeze(output_tensor, dim=0)
            output_arr = output_tensor.cpu().numpy()

            output_img = Image.fromarray(output_arr.astype('uint8'), mode='L')
            output_img = output_img.resize(img_size, Image.BICUBIC)

            output_img.putpalette(palette)
            output_img = output_img.convert('L')
            output_img.save(os.path.join(result_dir, image_name[:-4]+'.jpg'))

os.system(f"cd {BASE_DIR}")
from PIL import Image
def upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs(cloth_img):
    os.system(f"cd {BASE_DIR}")
    cloth_img = cloth_img.resize((768, 1024), Image.BICUBIC)
    cloth_img.save(f"{BASE_DIR}/cloth/cloth.jpg")
    cloth_img.save(f"{BASE_DIR}/VITON-HD/datasets/test/cloth/cloth.jpg")
    try:
        generate_cloth_mask(f"{BASE_DIR}/cloth", f"{BASE_DIR}/cloth_mask", f"{BASE_DIR}/cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth")
        cloth_mask_img = Image.open(f"{BASE_DIR}/cloth_mask/cloth.jpg")
        cloth_mask_img.save(f"{BASE_DIR}/VITON-HD/datasets/test/cloth-mask/cloth.jpg")
    except Exception as e:
      print(e)

# Gradio
os.system("pip install gradio")

import gradio as gr
# import cv2
from PIL import Image
IMAGEPATH='/content/fashion-eye-try-on/VITON-HD/datasets/test/image'
CLOTHPATH='/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth'
CLOTHMASKPATH='/content/fashion-eye-try-on/VITON-HD/datasets/test/image'

from threading import Thread

def fashion_eye_tryon(person_img, cloth_img):
  result_img = person_img
  # img.save(IMAGEPATH + "person.jpg")
  # dress.save(CLOTHPATH + "cloth.jpg")

  # txt = open("/content/VITON-HD/datasets/test_pairs.txt", "a")
  # txt.write("person_img.jpg dress_img.jpg\n")
  # txt.close()
  # # result
  # print(person_img.info, cloth_img.info)
  # p_t1 = Thread(target=upload_remove_background_and_save_person_image, args=(person_img, ))
  # c_t2 = Thread(target=upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs, args=(cloth_img, ))
  # p_t1.start()
  # c_t2.start()
  # p_t1.join()
  # c_t2.join()
  # Estimate pose
  try:
    upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs(cloth_img)
    upload_remove_background_and_save_person_image(person_img)
    remove_ipynb_checkpoints()
    estimate_pose()
    # Generate human parse
    remove_ipynb_checkpoints()
    generate_human_segmentation_map()
    generate_test_pairs_txt()
    remove_ipynb_checkpoints()
    generate_viton_hd()
    for p in ["/content/fashion-eye-try-on/output/person_cloth.jpg", "/content/fashion-eye-try-on/output/person.jpg_cloth.jpg"]:
        if os.path.exists(p):
            result_img = Image.open(p)      
  except Exception as e:
    print(e)
    return
  return result_img

# res = fashion_eye_tryon("", "")
# res.show()
gr.Interface(fn=fashion_eye_tryon, 
             inputs=[gr.Image(type = "pil", label="Your image"), gr.Image(type="pil", label="Dress")],
             outputs="image"
             ).launch(debug=True)

# !pip freeze > /content/requirements_final.txt