Spaces:
Build error
Build error
File size: 18,999 Bytes
a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d e2d6896 e38903d e2d6896 e38903d e2d6896 e38903d e2d6896 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 e38903d a05ef67 596562c a05ef67 e38903d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 |
# -*- coding: utf-8 -*-
"""With os FASHION-EYE_VITON-HD Integrated Full Model Final.ipynb
Automatically generated by Colaboratory.
"""
# !rm -rf sample_data
# !rm -rf fashion-eye-try-on/
BASE_DIR = "/home/user/app/fashion-eye-try-on"
import os
os.system(f"git clone https://huggingface.co/spaces/sidharthism/fashion-eye-try-on {BASE_DIR}")
# !pip install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu113
# !pip install -r /content/fashion-eye-try-on/requirements.txt
os.system("pip install torch>=1.6.0 torchvision -f https://download.pytorch.org/whl/cu92/torch_stable.html")
os.system("pip install opencv-python torchgeometry gdown Pillow")
os.system(f"cd {BASE_DIR}")
# Download and save checkpoints for cloth mask generation
os.system(f"rm -rf {BASE_DIR}/cloth_segmentation/checkpoints/")
os.system(f"gdown --id 1mhF3yqd7R-Uje092eypktNl-RoZNuiCJ -O {BASE_DIR}/cloth_segmentation/checkpoints/")
os.system(f"git clone https://github.com/shadow2496/VITON-HD {BASE_DIR}/VITON-HD")
#checkpoints
os.system(f"gdown 1RM4OthSM6V4r7kWCu8SbPIPY14Oz8B2u -O {BASE_DIR}/VITON-HD/checkpoints/alias_final.pth")
os.system(f"gdown 1MBHBddaAs7sy8W40jzLmNL83AUh035F1 -O {BASE_DIR}/VITON-HD/checkpoints/gmm_final.pth")
os.system(f"gdown 1MBHBddaAs7sy8W40jzLmNL83AUh035F1 -O {BASE_DIR}/VITON-HD/checkpoints/gmm_final.pth")
os.system(f"gdown 17U1sooR3mVIbe8a7rZuFIF3kukPchHfZ -O {BASE_DIR}/VITON-HD/checkpoints/seg_final.pth")
#test data
os.system(f"gdown 1ncEHn_6liOot8sgt3A2DOFJBffvx8tW8 -O {BASE_DIR}/VITON-HD/datasets/test_pairs.txt")
os.system(f"gdown 1ZA2C8yMOprwc0TV4hvrt0X-ljZugrClq -O {BASE_DIR}/VITON-HD/datasets/test.zip")
os.system(f"unzip {BASE_DIR}/VITON-HD/datasets/test.zip -d {BASE_DIR}/VITON-HD/datasets/")
#@title To clear all the already existing test data
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/image
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/image-parse
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/cloth
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/openpose-img
# !rm -rf /content/fashion-eye-try-on/VITON-HD/datasets/test/openpose-json
"""Paddle
"""
os.system(f"git clone https://huggingface.co/spaces/sidharthism/pipeline_paddle {BASE_DIR}/pipeline_paddle")
# Required for paddle and gradio (Jinja2 dependency)
os.system("pip install paddlepaddle-gpu pymatting")
os.system(f"pip install -r {BASE_DIR}/pipeline_paddle/requirements.txt")
os.system(f"rm -rf {BASE_DIR}/pipeline_paddle/models")
if not os.path.exists(f"{BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams"):
if not os.path.exists(f"{BASE_DIR}/pipeline_paddle/models"):
os.mkdir(f"{BASE_DIR}/pipeline_paddle/models")
os.system(f"wget https://paddleseg.bj.bcebos.com/matting/models/ppmatting-hrnet_w18-human_1024.pdparams -O {BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams")
# !wget "https://bj.bcebos.com/paddleseg/dygraph/hrnet_w18_ssld.tar.gz" -O "/content/fashion-eye-try-on/pipeline_paddle/models/hrnet_w18_ssld.tar.gz"
"""Initialization
Pose estimator - open pose
"""
# Clone openpose model repo
# os.system(f"git clone https://github.com/CMU-Perceptual-Computing-Lab/openpose.git {BASE_DIR}/openpose")
#@ Building and Installation of openpose model
import os
import subprocess
from os.path import exists, join, basename, splitext
project_name = f"{BASE_DIR}/openpose"
print(project_name)
if not exists(project_name):
# see: https://github.com/CMU-Perceptual-Computing-Lab/openpose/issues/949
# install new CMake becaue of CUDA10
os.system(f"wget -q https://cmake.org/files/v3.13/cmake-3.13.0-Linux-x86_64.tar.gz")
os.system(f"sudo tar xfz cmake-3.13.0-Linux-x86_64.tar.gz --strip-components=1 -C /usr/local")
# clone openpose
os.system(f"cd {BASE_DIR} && git clone -q --depth 1 https://github.com/CMU-Perceptual-Computing-Lab/openpose.git")
os.system("sudo sed -i 's/execute_process(COMMAND git checkout master WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}\/3rdparty\/caffe)/execute_process(COMMAND git checkout f019d0dfe86f49d1140961f8c7dec22130c83154 WORKING_DIRECTORY ${CMAKE_SOURCE_DIR}\/3rdparty\/caffe)/g' %s/openpose/CMakeLists.txt" % (BASE_DIR, ))
# install system dependencies
os.system("sudo apt-get -qq install -y libatlas-base-dev libprotobuf-dev libleveldb-dev libsnappy-dev libhdf5-serial-dev protobuf-compiler libgflags-dev libgoogle-glog-dev liblmdb-dev opencl-headers ocl-icd-opencl-dev libviennacl-dev")
# build openpose
print("Building openpose ... May take nearly 15 mins to build ...")
os.system(f"sudo cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`")
print("Openpose successfully build and installed.")
# subprocess.Popen(f"cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`")
# subprocess.call(["cd", f"{BASE_DIR}/openpose"])
# subprocess.check_output(["rm", "-rf", f"{BASE_DIR}/openpose/build || true"])
# subprocess.check_output(["mkdir", f"{BASE_DIR}/openpose/build"])
# subprocess.check_output(["cd", f"{BASE_DIR}/openpose/build"])
# subprocess.check_output(["cmake", ".."])
# subprocess.check_output(["make","-j`nproc`"])
# !cd {BASE_DIR}/openpose && rm -rf {BASE_DIR}/openpose/build || true && mkdir {BASE_DIR}/openpose/build && cd {BASE_DIR}/openpose/build && cmake .. && make -j`nproc`
"""Self correction human parsing"""
os.system(f"git clone https://github.com/PeikeLi/Self-Correction-Human-Parsing.git {BASE_DIR}/human_parse")
os.system(f"cd {BASE_DIR}/human_parse")
os.system(f"mkdir {BASE_DIR}/human_parse/checkpoints")
# !mkdir inputs
# !mkdir outputs
dataset = 'lip'
import gdown
dataset_url = 'https://drive.google.com/uc?id=1k4dllHpu0bdx38J7H28rVVLpU-kOHmnH'
output = f'{BASE_DIR}/human_parse/checkpoints/final.pth'
gdown.download(dataset_url, output, quiet=False)
# For human parse
os.system("pip install ninja")
"""Preprocessing
"""
# png to jpg
def convert_to_jpg(path):
from PIL import Image
import os
if os.path.exists(path):
cl = Image.open(path)
jpg_path = path[:-4] + ".jpg"
cl.save(jpg_path)
def resize_img(path):
from PIL import Image
print(path)
im = Image.open(path)
im = im.resize((768, 1024), Image.BICUBIC)
im.save(path)
def remove_ipynb_checkpoints():
import os
os.system(f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/image/.ipynb_checkpoints")
os.system(f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/cloth/.ipynb_checkpoints")
os.system(f"rm -rf {BASE_DIR}/VITON-HD/datasets/test/cloth-mask/.ipynb_checkpoints")
# os.chdir('/content/fashion-eye-try-on')
def preprocess():
remove_ipynb_checkpoints()
for path in os.listdir(f'{BASE_DIR}/VITON-HD/datasets/test/image/'):
resize_img(f'{BASE_DIR}/VITON-HD/datasets/test/image/{path}')
for path in os.listdir(f'{BASE_DIR}/VITON-HD/datasets/test/cloth/'):
resize_img(f'{BASE_DIR}/VITON-HD/datasets/test/cloth/{path}')
# for path in os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask/'):
# resize_img(f'/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth-mask/{path}')
"""Paddle - removing background
"""
# PPMatting hrnet 1024
# --fg_estimate True - for higher quality output but slower prediction
def upload_remove_background_and_save_person_image(person_img):
# !export CUDA_VISIBLE_DEVICES=0
person_img = person_img.resize((768, 1024), Image.BICUBIC)
if os.path.exists(f"{BASE_DIR}/pipeline_paddle/image/person.jpg"):
os.remove(f"{BASE_DIR}/pipeline_paddle/image/person.jpg")
person_img.save(f"{BASE_DIR}/pipeline_paddle/image/person.jpg")
# resize_img(f'/content/fashion-eye-try-on/pipeline_paddle/image/person.jpg')
os.system(f"cd {BASE_DIR}/pipeline_paddle/")
os.system(f"python {BASE_DIR}/pipeline_paddle/bg_replace.py \
--config {BASE_DIR}/pipeline_paddle/configs/ppmatting/ppmatting-hrnet_w18-human_1024.yml \
--model_path {BASE_DIR}/pipeline_paddle/models/ppmatting-hrnet_w18-human_1024.pdparams \
--image_path {BASE_DIR}/pipeline_paddle/image/person.jpg \
--background 'w' \
--save_dir {BASE_DIR}/VITON-HD/datasets/test/image \
--fg_estimate True")
# --save_dir /content/fashion-eye-try-on/pipeline_paddle/output \
try:
convert_to_jpg(f"{BASE_DIR}/VITON-HD/datasets/test/image/person.png")
# os.remove("/content/fashion-eye-try-on/pipeline_paddle/output/person_alpha.png")
os.remove(f"{BASE_DIR}/VITON-HD/datasets/test/image/person_alpha.png")
# os.remove("/content/fashion-eye-try-on/pipeline_paddle/output/person_rgba.png")
os.remove(f"{BASE_DIR}/VITON-HD/datasets/test/image/person_rgba.png")
os.system(f"cd {BASE_DIR}")
except Exception as e:
print(e)
os.system(f"cd {BASE_DIR}")
#@title If multiple GPU available,uncomment and try this code
os.system("export CUDA_VISIBLE_DEVICES=0")
# Openpose pose estimation
# Ubuntu and Mac
def estimate_pose():
os.system(f"cd {BASE_DIR}/openpose && ./build/examples/openpose/openpose.bin --image_dir {BASE_DIR}/VITON-HD/datasets/test/image --write_json {BASE_DIR}/VITON-HD/datasets/test/openpose-json/ --display 0 --face --hand --render_pose 0")
os.system(f"cd {BASE_DIR}/openpose && ./build/examples/openpose/openpose.bin --image_dir {BASE_DIR}/VITON-HD/datasets/test/image --write_images {BASE_DIR}/VITON-HD/datasets/test/openpose-img/ --display 0 --hand --render_pose 1 --disable_blending true")
os.system(f"cd {BASE_DIR}")
# !cd /content/fashion-eye-try-on/openpose && ./build/examples/openpose/openpose.bin --image_dir /content/fashion-eye-try-on/pipeline_paddle/output/ --write_images /content/fashion-eye-try-on/openpose_img/ --display 0 --hand --render_pose 1 --disable_blending true
# Run self correction human parser
# !python3 /content/fashion-eye-try-on/human_parse/simple_extractor.py --dataset 'lip' --model-restore '/content/fashion-eye-try-on/human_parse/checkpoints/final.pth' --input-dir '/content/fashion-eye-try-on/image' --output-dir '/content/fashion-eye-try-on/VITON-HD/datasets/test/image-parse'
def generate_human_segmentation_map():
# remove_ipynb_checkpoints()
os.system(f"python3 {BASE_DIR}/human_parse/simple_extractor.py --dataset 'lip' --model-restore '{BASE_DIR}/human_parse/checkpoints/final.pth' --input-dir '{BASE_DIR}/VITON-HD/datasets/test/image' --output-dir '{BASE_DIR}/VITON-HD/datasets/test/image-parse'")
# model_image = os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/image')
# cloth_image = os.listdir('/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth')
# pairs = zip(model_image, cloth_image)
# with open('/content/fashion-eye-try-on/VITON-HD/datasets/test_pairs.txt', 'w') as file:
# for model, cloth in pairs:
# file.write(f"{model} {cloth}\n")
def generate_test_pairs_txt():
with open(f"{BASE_DIR}/VITON-HD/datasets/test_pairs.txt", 'w') as file:
file.write(f"person.jpg cloth.jpg\n")
# VITON-HD
# Transfer the cloth to the model
def generate_viton_hd():
os.system(f"python {BASE_DIR}/VITON-HD/test.py --name output --dataset_list {BASE_DIR}/VITON-HD/datasets/test_pairs.txt --dataset_dir {BASE_DIR}/VITON-HD/datasets/ --checkpoint_dir {BASE_DIR}/VITON-HD/checkpoints --save_dir {BASE_DIR}/")
import sys
# To resolve ModuleNotFoundError during imports
if BASE_DIR not in sys.path:
sys.path.append(BASE_DIR)
sys.path.append(f"{BASE_DIR}/cloth_segmentation")
from cloth_segmentation.networks import U2NET
import torchvision.transforms as transforms
import torch.nn.functional as F
import os
from PIL import Image
from collections import OrderedDict
import torch
device = 'cuda' if torch.cuda.is_available() else "cpu"
if device == 'cuda':
torch.cuda.empty_cache()
# for hugging face
# BASE_DIR = "/home/path/app"
image_dir = 'cloth'
result_dir = 'cloth_mask'
checkpoint_path = 'cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth'
def load_checkpoint_mgpu(model, checkpoint_path):
if not os.path.exists(checkpoint_path):
print("----No checkpoints at given path----")
return
model_state_dict = torch.load(
checkpoint_path, map_location=torch.device("cpu"))
new_state_dict = OrderedDict()
for k, v in model_state_dict.items():
name = k[7:] # remove `module.`
new_state_dict[name] = v
model.load_state_dict(new_state_dict)
print("----checkpoints loaded from path: {}----".format(checkpoint_path))
return model
class Normalize_image(object):
"""Normalize given tensor into given mean and standard dev
Args:
mean (float): Desired mean to substract from tensors
std (float): Desired std to divide from tensors
"""
def __init__(self, mean, std):
assert isinstance(mean, (float))
if isinstance(mean, float):
self.mean = mean
if isinstance(std, float):
self.std = std
self.normalize_1 = transforms.Normalize(self.mean, self.std)
self.normalize_3 = transforms.Normalize(
[self.mean] * 3, [self.std] * 3)
self.normalize_18 = transforms.Normalize(
[self.mean] * 18, [self.std] * 18)
def __call__(self, image_tensor):
if image_tensor.shape[0] == 1:
return self.normalize_1(image_tensor)
elif image_tensor.shape[0] == 3:
return self.normalize_3(image_tensor)
elif image_tensor.shape[0] == 18:
return self.normalize_18(image_tensor)
else:
assert "Please set proper channels! Normlization implemented only for 1, 3 and 18"
def get_palette(num_cls):
""" Returns the color map for visualizing the segmentation mask.
Args:
num_cls: Number of classes
Returns:
The color map
"""
n = num_cls
palette = [0] * (n * 3)
for j in range(0, n):
lab = j
palette[j * 3 + 0] = 0
palette[j * 3 + 1] = 0
palette[j * 3 + 2] = 0
i = 0
while lab:
palette[j * 3 + 0] = 255
palette[j * 3 + 1] = 255
palette[j * 3 + 2] = 255
# palette[j * 3 + 0] |= (((lab >> 0) & 1) << (7 - i))
# palette[j * 3 + 1] |= (((lab >> 1) & 1) << (7 - i))
# palette[j * 3 + 2] |= (((lab >> 2) & 1) << (7 - i))
i += 1
lab >>= 3
return palette
def generate_cloth_mask(img_dir, output_dir, chkpt_dir):
global image_dir
global result_dir
global checkpoint_path
image_dir = img_dir
result_dir = output_dir
checkpoint_path = chkpt_dir
transforms_list = []
transforms_list += [transforms.ToTensor()]
transforms_list += [Normalize_image(0.5, 0.5)]
transform_rgb = transforms.Compose(transforms_list)
net = U2NET(in_ch=3, out_ch=4)
with torch.no_grad():
net = load_checkpoint_mgpu(net, checkpoint_path)
net = net.to(device)
net = net.eval()
palette = get_palette(4)
images_list = sorted(os.listdir(image_dir))
for image_name in images_list:
img = Image.open(os.path.join(
image_dir, image_name)).convert('RGB')
img_size = img.size
img = img.resize((768, 768), Image.BICUBIC)
image_tensor = transform_rgb(img)
image_tensor = torch.unsqueeze(image_tensor, 0)
output_tensor = net(image_tensor.to(device))
output_tensor = F.log_softmax(output_tensor[0], dim=1)
output_tensor = torch.max(output_tensor, dim=1, keepdim=True)[1]
output_tensor = torch.squeeze(output_tensor, dim=0)
output_tensor = torch.squeeze(output_tensor, dim=0)
output_arr = output_tensor.cpu().numpy()
output_img = Image.fromarray(output_arr.astype('uint8'), mode='L')
output_img = output_img.resize(img_size, Image.BICUBIC)
output_img.putpalette(palette)
output_img = output_img.convert('L')
output_img.save(os.path.join(result_dir, image_name[:-4]+'.jpg'))
os.system(f"cd {BASE_DIR}")
from PIL import Image
def upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs(cloth_img):
os.system(f"cd {BASE_DIR}")
cloth_img = cloth_img.resize((768, 1024), Image.BICUBIC)
cloth_img.save(f"{BASE_DIR}/cloth/cloth.jpg")
cloth_img.save(f"{BASE_DIR}/VITON-HD/datasets/test/cloth/cloth.jpg")
try:
generate_cloth_mask(f"{BASE_DIR}/cloth", f"{BASE_DIR}/cloth_mask", f"{BASE_DIR}/cloth_segmentation/checkpoints/cloth_segm_u2net_latest.pth")
cloth_mask_img = Image.open(f"{BASE_DIR}/cloth_mask/cloth.jpg")
cloth_mask_img.save(f"{BASE_DIR}/VITON-HD/datasets/test/cloth-mask/cloth.jpg")
except Exception as e:
print(e)
# Gradio
os.system("pip install gradio")
import gradio as gr
# import cv2
from PIL import Image
IMAGEPATH='/content/fashion-eye-try-on/VITON-HD/datasets/test/image'
CLOTHPATH='/content/fashion-eye-try-on/VITON-HD/datasets/test/cloth'
CLOTHMASKPATH='/content/fashion-eye-try-on/VITON-HD/datasets/test/image'
from threading import Thread
def fashion_eye_tryon(person_img, cloth_img):
result_img = person_img
# img.save(IMAGEPATH + "person.jpg")
# dress.save(CLOTHPATH + "cloth.jpg")
# txt = open("/content/VITON-HD/datasets/test_pairs.txt", "a")
# txt.write("person_img.jpg dress_img.jpg\n")
# txt.close()
# # result
# print(person_img.info, cloth_img.info)
# p_t1 = Thread(target=upload_remove_background_and_save_person_image, args=(person_img, ))
# c_t2 = Thread(target=upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs, args=(cloth_img, ))
# p_t1.start()
# c_t2.start()
# p_t1.join()
# c_t2.join()
# Estimate pose
try:
upload_resize_generate_cloth_mask_and_move_to_viton_hd_test_inputs(cloth_img)
upload_remove_background_and_save_person_image(person_img)
remove_ipynb_checkpoints()
estimate_pose()
# Generate human parse
remove_ipynb_checkpoints()
generate_human_segmentation_map()
generate_test_pairs_txt()
remove_ipynb_checkpoints()
generate_viton_hd()
for p in ["/content/fashion-eye-try-on/output/person_cloth.jpg", "/content/fashion-eye-try-on/output/person.jpg_cloth.jpg"]:
if os.path.exists(p):
result_img = Image.open(p)
except Exception as e:
print(e)
return
return result_img
# res = fashion_eye_tryon("", "")
# res.show()
gr.Interface(fn=fashion_eye_tryon,
inputs=[gr.Image(type = "pil", label="Your image"), gr.Image(type="pil", label="Dress")],
outputs="image"
).launch(debug=True)
# !pip freeze > /content/requirements_final.txt |