sidharthism's picture
Added model *.pdparams
1ab1a09
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
from paddleseg.cvlibs import manager
from paddleseg.models import layers
from paddleseg.utils import utils
@manager.MODELS.add_component
class DANet(nn.Layer):
"""
The DANet implementation based on PaddlePaddle.
The original article refers to
Fu, jun, et al. "Dual Attention Network for Scene Segmentation"
(https://arxiv.org/pdf/1809.02983.pdf)
Args:
num_classes (int): The unique number of target classes.
backbone (Paddle.nn.Layer): A backbone network.
backbone_indices (tuple): The values in the tuple indicate the indices of
output of backbone.
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False.
pretrained (str, optional): The path or url of pretrained model. Default: None.
"""
def __init__(self,
num_classes,
backbone,
backbone_indices,
align_corners=False,
pretrained=None):
super().__init__()
self.backbone = backbone
self.backbone_indices = backbone_indices
in_channels = [self.backbone.feat_channels[i] for i in backbone_indices]
self.head = DAHead(num_classes=num_classes, in_channels=in_channels)
self.align_corners = align_corners
self.pretrained = pretrained
self.init_weight()
def forward(self, x):
feats = self.backbone(x)
feats = [feats[i] for i in self.backbone_indices]
logit_list = self.head(feats)
if not self.training:
logit_list = [logit_list[0]]
logit_list = [
F.interpolate(
logit,
paddle.shape(x)[2:],
mode='bilinear',
align_corners=self.align_corners,
align_mode=1) for logit in logit_list
]
return logit_list
def init_weight(self):
if self.pretrained is not None:
utils.load_entire_model(self, self.pretrained)
class DAHead(nn.Layer):
"""
The Dual attention head.
Args:
num_classes (int): The unique number of target classes.
in_channels (tuple): The number of input channels.
"""
def __init__(self, num_classes, in_channels):
super().__init__()
in_channels = in_channels[-1]
inter_channels = in_channels // 4
self.channel_conv = layers.ConvBNReLU(in_channels, inter_channels, 3)
self.position_conv = layers.ConvBNReLU(in_channels, inter_channels, 3)
self.pam = PAM(inter_channels)
self.cam = CAM(inter_channels)
self.conv1 = layers.ConvBNReLU(inter_channels, inter_channels, 3)
self.conv2 = layers.ConvBNReLU(inter_channels, inter_channels, 3)
self.aux_head = nn.Sequential(
nn.Dropout2D(0.1), nn.Conv2D(in_channels, num_classes, 1))
self.aux_head_pam = nn.Sequential(
nn.Dropout2D(0.1), nn.Conv2D(inter_channels, num_classes, 1))
self.aux_head_cam = nn.Sequential(
nn.Dropout2D(0.1), nn.Conv2D(inter_channels, num_classes, 1))
self.cls_head = nn.Sequential(
nn.Dropout2D(0.1), nn.Conv2D(inter_channels, num_classes, 1))
def forward(self, feat_list):
feats = feat_list[-1]
channel_feats = self.channel_conv(feats)
channel_feats = self.cam(channel_feats)
channel_feats = self.conv1(channel_feats)
position_feats = self.position_conv(feats)
position_feats = self.pam(position_feats)
position_feats = self.conv2(position_feats)
feats_sum = position_feats + channel_feats
logit = self.cls_head(feats_sum)
if not self.training:
return [logit]
cam_logit = self.aux_head_cam(channel_feats)
pam_logit = self.aux_head_cam(position_feats)
aux_logit = self.aux_head(feats)
return [logit, cam_logit, pam_logit, aux_logit]
class PAM(nn.Layer):
"""Position attention module."""
def __init__(self, in_channels):
super().__init__()
mid_channels = in_channels // 8
self.mid_channels = mid_channels
self.in_channels = in_channels
self.query_conv = nn.Conv2D(in_channels, mid_channels, 1, 1)
self.key_conv = nn.Conv2D(in_channels, mid_channels, 1, 1)
self.value_conv = nn.Conv2D(in_channels, in_channels, 1, 1)
self.gamma = self.create_parameter(
shape=[1],
dtype='float32',
default_initializer=nn.initializer.Constant(0))
def forward(self, x):
x_shape = paddle.shape(x)
# query: n, h * w, c1
query = self.query_conv(x)
query = paddle.reshape(query, (0, self.mid_channels, -1))
query = paddle.transpose(query, (0, 2, 1))
# key: n, c1, h * w
key = self.key_conv(x)
key = paddle.reshape(key, (0, self.mid_channels, -1))
# sim: n, h * w, h * w
sim = paddle.bmm(query, key)
sim = F.softmax(sim, axis=-1)
value = self.value_conv(x)
value = paddle.reshape(value, (0, self.in_channels, -1))
sim = paddle.transpose(sim, (0, 2, 1))
# feat: from (n, c2, h * w) -> (n, c2, h, w)
feat = paddle.bmm(value, sim)
feat = paddle.reshape(feat,
(0, self.in_channels, x_shape[2], x_shape[3]))
out = self.gamma * feat + x
return out
class CAM(nn.Layer):
"""Channel attention module."""
def __init__(self, channels):
super().__init__()
self.channels = channels
self.gamma = self.create_parameter(
shape=[1],
dtype='float32',
default_initializer=nn.initializer.Constant(0))
def forward(self, x):
x_shape = paddle.shape(x)
# query: n, c, h * w
query = paddle.reshape(x, (0, self.channels, -1))
# key: n, h * w, c
key = paddle.reshape(x, (0, self.channels, -1))
key = paddle.transpose(key, (0, 2, 1))
# sim: n, c, c
sim = paddle.bmm(query, key)
# The danet author claims that this can avoid gradient divergence
sim = paddle.max(sim, axis=-1, keepdim=True).tile(
[1, 1, self.channels]) - sim
sim = F.softmax(sim, axis=-1)
# feat: from (n, c, h * w) to (n, c, h, w)
value = paddle.reshape(x, (0, self.channels, -1))
feat = paddle.bmm(sim, value)
feat = paddle.reshape(feat, (0, self.channels, x_shape[2], x_shape[3]))
out = self.gamma * feat + x
return out