Spaces:
Configuration error
Configuration error
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.cvlibs import manager | |
from paddleseg.models import layers | |
from paddleseg.utils import utils | |
__all__ = ['DeepLabV3P', 'DeepLabV3'] | |
class DeepLabV3P(nn.Layer): | |
""" | |
The DeepLabV3Plus implementation based on PaddlePaddle. | |
The original article refers to | |
Liang-Chieh Chen, et, al. "Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation" | |
(https://arxiv.org/abs/1802.02611) | |
Args: | |
num_classes (int): The unique number of target classes. | |
backbone (paddle.nn.Layer): Backbone network, currently support Resnet50_vd/Resnet101_vd/Xception65. | |
backbone_indices (tuple, optional): Two values in the tuple indicate the indices of output of backbone. | |
Default: (0, 3). | |
aspp_ratios (tuple, optional): The dilation rate using in ASSP module. | |
If output_stride=16, aspp_ratios should be set as (1, 6, 12, 18). | |
If output_stride=8, aspp_ratios is (1, 12, 24, 36). | |
Default: (1, 6, 12, 18). | |
aspp_out_channels (int, optional): The output channels of ASPP module. Default: 256. | |
align_corners (bool, optional): An argument of F.interpolate. It should be set to False when the feature size is even, | |
e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. | |
pretrained (str, optional): The path or url of pretrained model. Default: None. | |
data_format(str, optional): Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW". | |
""" | |
def __init__(self, | |
num_classes, | |
backbone, | |
backbone_indices=(0, 3), | |
aspp_ratios=(1, 6, 12, 18), | |
aspp_out_channels=256, | |
align_corners=False, | |
pretrained=None, | |
data_format="NCHW"): | |
super().__init__() | |
self.backbone = backbone | |
backbone_channels = [ | |
backbone.feat_channels[i] for i in backbone_indices | |
] | |
self.head = DeepLabV3PHead( | |
num_classes, | |
backbone_indices, | |
backbone_channels, | |
aspp_ratios, | |
aspp_out_channels, | |
align_corners, | |
data_format=data_format) | |
self.align_corners = align_corners | |
self.pretrained = pretrained | |
self.data_format = data_format | |
self.init_weight() | |
def forward(self, x): | |
feat_list = self.backbone(x) | |
logit_list = self.head(feat_list) | |
if self.data_format == 'NCHW': | |
ori_shape = paddle.shape(x)[2:] | |
else: | |
ori_shape = paddle.shape(x)[1:3] | |
return [ | |
F.interpolate( | |
logit, | |
ori_shape, | |
mode='bilinear', | |
align_corners=self.align_corners, | |
data_format=self.data_format) for logit in logit_list | |
] | |
def init_weight(self): | |
if self.pretrained is not None: | |
utils.load_entire_model(self, self.pretrained) | |
class DeepLabV3PHead(nn.Layer): | |
""" | |
The DeepLabV3PHead implementation based on PaddlePaddle. | |
Args: | |
num_classes (int): The unique number of target classes. | |
backbone_indices (tuple): Two values in the tuple indicate the indices of output of backbone. | |
the first index will be taken as a low-level feature in Decoder component; | |
the second one will be taken as input of ASPP component. | |
Usually backbone consists of four downsampling stage, and return an output of | |
each stage. If we set it as (0, 3), it means taking feature map of the first | |
stage in backbone as low-level feature used in Decoder, and feature map of the fourth | |
stage as input of ASPP. | |
backbone_channels (tuple): The same length with "backbone_indices". It indicates the channels of corresponding index. | |
aspp_ratios (tuple): The dilation rates using in ASSP module. | |
aspp_out_channels (int): The output channels of ASPP module. | |
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature | |
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. | |
data_format(str, optional): Data format that specifies the layout of input. It can be "NCHW" or "NHWC". Default: "NCHW". | |
""" | |
def __init__(self, | |
num_classes, | |
backbone_indices, | |
backbone_channels, | |
aspp_ratios, | |
aspp_out_channels, | |
align_corners, | |
data_format='NCHW'): | |
super().__init__() | |
self.aspp = layers.ASPPModule( | |
aspp_ratios, | |
backbone_channels[1], | |
aspp_out_channels, | |
align_corners, | |
use_sep_conv=True, | |
image_pooling=True, | |
data_format=data_format) | |
self.decoder = Decoder( | |
num_classes, | |
backbone_channels[0], | |
align_corners, | |
data_format=data_format) | |
self.backbone_indices = backbone_indices | |
def forward(self, feat_list): | |
logit_list = [] | |
low_level_feat = feat_list[self.backbone_indices[0]] | |
x = feat_list[self.backbone_indices[1]] | |
x = self.aspp(x) | |
logit = self.decoder(x, low_level_feat) | |
logit_list.append(logit) | |
return logit_list | |
class DeepLabV3(nn.Layer): | |
""" | |
The DeepLabV3 implementation based on PaddlePaddle. | |
The original article refers to | |
Liang-Chieh Chen, et, al. "Rethinking Atrous Convolution for Semantic Image Segmentation" | |
(https://arxiv.org/pdf/1706.05587.pdf). | |
Args: | |
Please Refer to DeepLabV3P above. | |
""" | |
def __init__(self, | |
num_classes, | |
backbone, | |
backbone_indices=(3, ), | |
aspp_ratios=(1, 6, 12, 18), | |
aspp_out_channels=256, | |
align_corners=False, | |
pretrained=None): | |
super().__init__() | |
self.backbone = backbone | |
backbone_channels = [ | |
backbone.feat_channels[i] for i in backbone_indices | |
] | |
self.head = DeepLabV3Head(num_classes, backbone_indices, | |
backbone_channels, aspp_ratios, | |
aspp_out_channels, align_corners) | |
self.align_corners = align_corners | |
self.pretrained = pretrained | |
self.init_weight() | |
def forward(self, x): | |
feat_list = self.backbone(x) | |
logit_list = self.head(feat_list) | |
return [ | |
F.interpolate( | |
logit, | |
paddle.shape(x)[2:], | |
mode='bilinear', | |
align_corners=self.align_corners) for logit in logit_list | |
] | |
def init_weight(self): | |
if self.pretrained is not None: | |
utils.load_entire_model(self, self.pretrained) | |
class DeepLabV3Head(nn.Layer): | |
""" | |
The DeepLabV3Head implementation based on PaddlePaddle. | |
Args: | |
Please Refer to DeepLabV3PHead above. | |
""" | |
def __init__(self, num_classes, backbone_indices, backbone_channels, | |
aspp_ratios, aspp_out_channels, align_corners): | |
super().__init__() | |
self.aspp = layers.ASPPModule( | |
aspp_ratios, | |
backbone_channels[0], | |
aspp_out_channels, | |
align_corners, | |
use_sep_conv=False, | |
image_pooling=True) | |
self.cls = nn.Conv2D( | |
in_channels=aspp_out_channels, | |
out_channels=num_classes, | |
kernel_size=1) | |
self.backbone_indices = backbone_indices | |
def forward(self, feat_list): | |
logit_list = [] | |
x = feat_list[self.backbone_indices[0]] | |
x = self.aspp(x) | |
logit = self.cls(x) | |
logit_list.append(logit) | |
return logit_list | |
class Decoder(nn.Layer): | |
""" | |
Decoder module of DeepLabV3P model | |
Args: | |
num_classes (int): The number of classes. | |
in_channels (int): The number of input channels in decoder module. | |
""" | |
def __init__(self, | |
num_classes, | |
in_channels, | |
align_corners, | |
data_format='NCHW'): | |
super(Decoder, self).__init__() | |
self.data_format = data_format | |
self.conv_bn_relu1 = layers.ConvBNReLU( | |
in_channels=in_channels, | |
out_channels=48, | |
kernel_size=1, | |
data_format=data_format) | |
self.conv_bn_relu2 = layers.SeparableConvBNReLU( | |
in_channels=304, | |
out_channels=256, | |
kernel_size=3, | |
padding=1, | |
data_format=data_format) | |
self.conv_bn_relu3 = layers.SeparableConvBNReLU( | |
in_channels=256, | |
out_channels=256, | |
kernel_size=3, | |
padding=1, | |
data_format=data_format) | |
self.conv = nn.Conv2D( | |
in_channels=256, | |
out_channels=num_classes, | |
kernel_size=1, | |
data_format=data_format) | |
self.align_corners = align_corners | |
def forward(self, x, low_level_feat): | |
low_level_feat = self.conv_bn_relu1(low_level_feat) | |
if self.data_format == 'NCHW': | |
low_level_shape = paddle.shape(low_level_feat)[-2:] | |
axis = 1 | |
else: | |
low_level_shape = paddle.shape(low_level_feat)[1:3] | |
axis = -1 | |
x = F.interpolate( | |
x, | |
low_level_shape, | |
mode='bilinear', | |
align_corners=self.align_corners, | |
data_format=self.data_format) | |
x = paddle.concat([x, low_level_feat], axis=axis) | |
x = self.conv_bn_relu2(x) | |
x = self.conv_bn_relu3(x) | |
x = self.conv(x) | |
return x | |