Spaces:
Configuration error
Configuration error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import paddle | |
import paddle.nn as nn | |
import paddle.nn.functional as F | |
from paddleseg.models import layers | |
from paddleseg.cvlibs import manager | |
from paddleseg.utils import utils | |
class DNLNet(nn.Layer): | |
"""Disentangled Non-Local Neural Networks. | |
The original article refers to | |
Minghao Yin, et al. "Disentangled Non-Local Neural Networks" | |
(https://arxiv.org/abs/2006.06668) | |
Args: | |
num_classes (int): The unique number of target classes. | |
backbone (Paddle.nn.Layer): A backbone network. | |
backbone_indices (tuple): The values in the tuple indicate the indices of output of backbone. | |
reduction (int): Reduction factor of projection transform. Default: 2. | |
use_scale (bool): Whether to scale pairwise_weight by | |
sqrt(1/inter_channels). Default: False. | |
mode (str): The nonlocal mode. Options are 'embedded_gaussian', | |
'dot_product'. Default: 'embedded_gaussian'. | |
temperature (float): Temperature to adjust attention. Default: 0.05. | |
concat_input (bool): Whether concat the input and output of convs before classification layer. Default: True | |
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True. | |
align_corners (bool): An argument of F.interpolate. It should be set to False when the output size of feature | |
is even, e.g. 1024x512, otherwise it is True, e.g. 769x769. Default: False. | |
pretrained (str, optional): The path or url of pretrained model. Default: None. | |
""" | |
def __init__(self, | |
num_classes, | |
backbone, | |
backbone_indices=(2, 3), | |
reduction=2, | |
use_scale=True, | |
mode='embedded_gaussian', | |
temperature=0.05, | |
concat_input=True, | |
enable_auxiliary_loss=True, | |
align_corners=False, | |
pretrained=None): | |
super().__init__() | |
self.backbone = backbone | |
self.backbone_indices = backbone_indices | |
in_channels = [self.backbone.feat_channels[i] for i in backbone_indices] | |
self.head = DNLHead(num_classes, in_channels, reduction, use_scale, | |
mode, temperature, concat_input, | |
enable_auxiliary_loss) | |
self.align_corners = align_corners | |
self.pretrained = pretrained | |
self.init_weight() | |
def forward(self, x): | |
feats = self.backbone(x) | |
feats = [feats[i] for i in self.backbone_indices] | |
logit_list = self.head(feats) | |
logit_list = [ | |
F.interpolate( | |
logit, | |
paddle.shape(x)[2:], | |
mode='bilinear', | |
align_corners=self.align_corners, | |
align_mode=1) for logit in logit_list | |
] | |
return logit_list | |
def init_weight(self): | |
if self.pretrained is not None: | |
utils.load_entire_model(self, self.pretrained) | |
class DNLHead(nn.Layer): | |
""" | |
The DNLNet head. | |
Args: | |
num_classes (int): The unique number of target classes. | |
in_channels (tuple): The number of input channels. | |
reduction (int): Reduction factor of projection transform. Default: 2. | |
use_scale (bool): Whether to scale pairwise_weight by | |
sqrt(1/inter_channels). Default: False. | |
mode (str): The nonlocal mode. Options are 'embedded_gaussian', | |
'dot_product'. Default: 'embedded_gaussian.'. | |
temperature (float): Temperature to adjust attention. Default: 0.05 | |
concat_input (bool): Whether concat the input and output of convs before classification layer. Default: True | |
enable_auxiliary_loss (bool, optional): A bool value indicates whether adding auxiliary loss. Default: True. | |
""" | |
def __init__(self, | |
num_classes, | |
in_channels, | |
reduction, | |
use_scale, | |
mode, | |
temperature, | |
concat_input=True, | |
enable_auxiliary_loss=True, | |
**kwargs): | |
super(DNLHead, self).__init__() | |
self.in_channels = in_channels[-1] | |
self.concat_input = concat_input | |
self.enable_auxiliary_loss = enable_auxiliary_loss | |
inter_channels = self.in_channels // 4 | |
self.dnl_block = DisentangledNonLocal2D( | |
in_channels=inter_channels, | |
reduction=reduction, | |
use_scale=use_scale, | |
temperature=temperature, | |
mode=mode) | |
self.conv0 = layers.ConvBNReLU( | |
in_channels=self.in_channels, | |
out_channels=inter_channels, | |
kernel_size=3, | |
bias_attr=False) | |
self.conv1 = layers.ConvBNReLU( | |
in_channels=inter_channels, | |
out_channels=inter_channels, | |
kernel_size=3, | |
bias_attr=False) | |
self.cls = nn.Sequential( | |
nn.Dropout2D(p=0.1), nn.Conv2D(inter_channels, num_classes, 1)) | |
self.aux = nn.Sequential( | |
layers.ConvBNReLU( | |
in_channels=1024, | |
out_channels=256, | |
kernel_size=3, | |
bias_attr=False), | |
nn.Dropout2D(p=0.1), | |
nn.Conv2D(256, num_classes, 1)) | |
if self.concat_input: | |
self.conv_cat = layers.ConvBNReLU( | |
self.in_channels + inter_channels, | |
inter_channels, | |
kernel_size=3, | |
bias_attr=False) | |
def forward(self, feat_list): | |
C3, C4 = feat_list | |
output = self.conv0(C4) | |
output = self.dnl_block(output) | |
output = self.conv1(output) | |
if self.concat_input: | |
output = self.conv_cat(paddle.concat([C4, output], axis=1)) | |
output = self.cls(output) | |
if self.enable_auxiliary_loss: | |
auxout = self.aux(C3) | |
return [output, auxout] | |
else: | |
return [output] | |
class DisentangledNonLocal2D(layers.NonLocal2D): | |
"""Disentangled Non-Local Blocks. | |
Args: | |
temperature (float): Temperature to adjust attention. | |
""" | |
def __init__(self, temperature, *arg, **kwargs): | |
super().__init__(*arg, **kwargs) | |
self.temperature = temperature | |
self.conv_mask = nn.Conv2D(self.in_channels, 1, kernel_size=1) | |
def embedded_gaussian(self, theta_x, phi_x): | |
pairwise_weight = paddle.matmul(theta_x, phi_x) | |
if self.use_scale: | |
pairwise_weight /= theta_x.shape[-1]**0.5 | |
pairwise_weight /= self.temperature | |
pairwise_weight = F.softmax(pairwise_weight, -1) | |
return pairwise_weight | |
def forward(self, x): | |
x_shape = paddle.shape(x) | |
g_x = self.g(x).reshape([0, self.inter_channels, | |
-1]).transpose([0, 2, 1]) | |
if self.mode == "gaussian": | |
theta_x = paddle.transpose( | |
x.reshape([0, self.in_channels, -1]), [0, 2, 1]) | |
if self.sub_sample: | |
phi_x = paddle.transpose(self.phi(x), [0, self.in_channels, -1]) | |
else: | |
phi_x = paddle.transpose(x, [0, self.in_channels, -1]) | |
elif self.mode == "concatenation": | |
theta_x = paddle.reshape( | |
self.theta(x), [0, self.inter_channels, -1, 1]) | |
phi_x = paddle.reshape(self.phi(x), [0, self.inter_channels, 1, -1]) | |
else: | |
theta_x = self.theta(x).reshape([0, self.inter_channels, | |
-1]).transpose([0, 2, 1]) | |
phi_x = paddle.reshape(self.phi(x), [0, self.inter_channels, -1]) | |
theta_x -= paddle.mean(theta_x, axis=-2, keepdim=True) | |
phi_x -= paddle.mean(phi_x, axis=-1, keepdim=True) | |
pairwise_func = getattr(self, self.mode) | |
pairwise_weight = pairwise_func(theta_x, phi_x) | |
y = paddle.matmul(pairwise_weight, g_x).transpose([0, 2, 1]).reshape( | |
[0, self.inter_channels, x_shape[2], x_shape[3]]) | |
unary_mask = F.softmax( | |
paddle.reshape(self.conv_mask(x), [0, 1, -1]), -1) | |
unary_x = paddle.matmul(unary_mask, g_x).transpose([0, 2, 1]).reshape( | |
[0, self.inter_channels, 1, 1]) | |
output = x + self.conv_out(y + unary_x) | |
return output | |