|
import gradio as gr |
|
import numpy as np |
|
from sklearn.datasets import load_iris |
|
from sklearn.pipeline import Pipeline |
|
from sklearn.feature_selection import SelectPercentile, f_classif |
|
from sklearn.preprocessing import StandardScaler |
|
from sklearn.svm import SVC |
|
import matplotlib.pyplot as plt |
|
from sklearn.model_selection import cross_val_score |
|
|
|
def svm_anova_app(percentiles): |
|
X, y = load_iris(return_X_y=True) |
|
|
|
|
|
rng = np.random.RandomState(0) |
|
X = np.hstack((X, 2 * rng.random((X.shape[0], 36)))) |
|
|
|
|
|
clf = Pipeline([ |
|
("anova", SelectPercentile(f_classif)), |
|
("scaler", StandardScaler()), |
|
("svc", SVC(gamma="auto")), |
|
]) |
|
|
|
score_means = [] |
|
score_stds = [] |
|
|
|
for p in percentiles: |
|
clf.set_params(anova__percentile=float(p)) |
|
this_scores = cross_val_score(clf, X, y) |
|
score_means.append(this_scores.mean()) |
|
score_stds.append(this_scores.std()) |
|
|
|
plt.errorbar(percentiles, score_means, np.array(score_stds)) |
|
plt.title("Performance of the SVM-Anova varying the percentile of features selected") |
|
plt.xticks(np.linspace(0, 100, 11, endpoint=True)) |
|
plt.xlabel("Percentile") |
|
plt.ylabel("Accuracy Score") |
|
plt.axis("tight") |
|
|
|
|
|
plt.savefig("plot.png") |
|
plt.close() |
|
|
|
return "plot.png" |
|
|
|
iface = gr.Interface( |
|
fn=svm_anova_app, |
|
inputs=gr.inputs.CheckboxGroup(['1', '3', '6', '10', '15', '20', '25', '30', '35', '40', '45', '50', '55', '60', '65', '70', '75', '80', '85', '90', '95', '100'], label="Percentiles"), |
|
outputs="image", |
|
title="SVM-Anova Performance", |
|
description="This example shows how to perform univariate feature selection before running a SVC (support vector classifier) to improve the classification scores. We use the iris dataset (4 features) and add 36 non-informative features. We can find that our model achieves best performance when we select around 10 percent of features. See the original scikit-learn example here: https://scikit-learn.org/stable/auto_examples/svm/plot_svm_anova.html" |
|
) |
|
|
|
iface.launch() |
|
|