Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Update app.py
Browse files
app.py
CHANGED
@@ -71,9 +71,15 @@ def get_app_fn():
|
|
71 |
|
72 |
|
73 |
title = "Bayesian Ridge Regression"
|
|
|
|
|
|
|
|
|
|
|
74 |
with gr.Blocks(title=title) as demo:
|
75 |
gr.Markdown(f"## {title}")
|
76 |
-
|
|
|
77 |
n_samples_input = gr.Slider(minimum=5, maximum=100, value=25, step=1, label="#observations")
|
78 |
alpha_input = gr.Slider(minimum=0.001, maximum=5, value=1.9, step=0.01, label="alpha_init")
|
79 |
lambda_input = gr.Slider(minimum=0.001, maximum=5, value=1., step=0.01, label="lambda_init")
|
|
|
71 |
|
72 |
|
73 |
title = "Bayesian Ridge Regression"
|
74 |
+
description = (
|
75 |
+
"This example shows the effect of different initial values for the regularisation paramters (alpha, lambda)."
|
76 |
+
"When starting from the default values (alpha_init = 1.90, lambda_init = 1.), the bias of the resulting curve is large, "
|
77 |
+
"and the variance is small. So, lambda_init should be relatively small (1.e-3) to reduce the bias."
|
78 |
+
)
|
79 |
with gr.Blocks(title=title) as demo:
|
80 |
gr.Markdown(f"## {title}")
|
81 |
+
gr.Markdown(description)
|
82 |
+
|
83 |
n_samples_input = gr.Slider(minimum=5, maximum=100, value=25, step=1, label="#observations")
|
84 |
alpha_input = gr.Slider(minimum=0.001, maximum=5, value=1.9, step=0.01, label="alpha_init")
|
85 |
lambda_input = gr.Slider(minimum=0.001, maximum=5, value=1., step=0.01, label="lambda_init")
|