File size: 5,935 Bytes
ac8e656 b8c493d ac8e656 b8c493d ac8e656 b8c493d ac8e656 b8c493d ac8e656 b8c493d ac8e656 3af96c7 ac8e656 b8c493d ac8e656 43ae0c3 b8c493d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 |
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
plt.rcParams['figure.dpi'] = 100
from sklearn.ensemble import AdaBoostClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.datasets import make_gaussian_quantiles
from sklearn.inspection import DecisionBoundaryDisplay
import gradio as gr
#=======================================================
C1, C2 = '#ff0000', '#0000ff'
CMAP = ListedColormap([C1, C2])
GRANULARITY = 0.05
#=======================================================
def get_decision_surface(X, y, model):
x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1
y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1
xrange = np.arange(x_min, x_max, GRANULARITY)
yrange = np.arange(y_min, y_max, GRANULARITY)
xx, yy = np.meshgrid(xrange, yrange)
Z = model.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
return xx, yy, Z
def create_plot(x1, y1, x2, y2, cov1, cov2, n1, n2, max_depth, n_estimators):
#Generate the dataset
X1, y1 = make_gaussian_quantiles(
mean=(x1, y1), cov=cov1, n_samples=n1, n_features=2, n_classes=2
)
X2, y2 = make_gaussian_quantiles(
mean=(x2, y2), cov=cov2, n_samples=n2, n_features=2, n_classes=2
)
X = np.concatenate((X1, X2))
y = np.concatenate((y1, -y2 + 1))
clf = AdaBoostClassifier(DecisionTreeClassifier(max_depth=max_depth), algorithm="SAMME", n_estimators=n_estimators)
clf.fit(X, y)
fig = plt.figure(figsize=(4.5, 6.9))
ax = fig.add_subplot(211)
xx, yy, Z = get_decision_surface(X, y, clf)
ax.contourf(xx, yy, Z, cmap=CMAP, alpha=0.4)
X1, y1 = X[y==0], y[y==0]
X2, y2 = X[y==1], y[y==1]
ax.scatter(X1[:, 0], X1[:, 1], c=C1, edgecolor='k', s=20, label='Class A')
ax.scatter(X2[:, 0], X2[:, 1], c=C2, edgecolor='k', s=20, label='Class B')
ax.legend()
ax.set_title(f'AdaBoostClassifier Decision Surface')
scores = clf.decision_function(X)
ax = fig.add_subplot(212)
ax.hist(scores[y==0], bins=100, range=(scores.min(), scores.max()), facecolor=C1, label="Class A", alpha=0.5, edgecolor="k")
ax.hist(scores[y==1], bins=100, range=(scores.min(), scores.max()), facecolor=C2, label="Class B", alpha=0.5, edgecolor="k")
ax.set_xlabel('Score'); ax.set_ylabel('Frequency')
ax.legend()
ax.set_title('Decision Scores')
fig.set_tight_layout(True)
return fig
info = '''
This example fits an [AdaBoost classifier](https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier) on two non-linearly separable classes. The samples are generated using two [Gaussian quantiles](https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_gaussian_quantiles.html#sklearn.datasets.make_gaussian_quantiles) of configurable mean and covariance (see the sliders below).
For the first generated Gaussian, the inner half quantile is assigned to Class A and the outer half quantile is assigned to class B. For the second generated quantile, the opposite assignment happens (inner = Class B, outer = Class A).
A histogram of the decision scores of the AdaBoostClassifer is shown below. Values closer to -1 mean a high confidence that the sample belongs to Class A, and values closer to 1 mean a high confidence that the sample belongs to Class B.
Use the controls below to change the Gaussian distribution parameters, number of generated samples in each Gaussian distribution, and the classifier's max_depth and n_estimators.
Created by [@huabdul](https://huggingface.co/huabdul) based on [Scikit-learn docs](https://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html).
'''
with gr.Blocks(analytics_enabled=False) as demo:
with gr.Row():
with gr.Column(scale=2):
gr.Markdown(info)
with gr.Row():
with gr.Column(min_width=100):
s_x1 = gr.Slider(-10, 10, value=0, step=0.1, label='Mean x1')
with gr.Column(min_width=100):
s_y1 = gr.Slider(-10, 10, value=0, step=0.1, label='Mean y1')
with gr.Row():
with gr.Column(min_width=100):
s_x2 = gr.Slider(-10, 10, value=2, step=0.1, label='Mean x2')
with gr.Column(min_width=100):
s_y2 = gr.Slider(-10, 10, value=2, step=0.1, label='Mean y2')
with gr.Row():
with gr.Column(min_width=100):
s_cov1 = gr.Slider(0.01, 5, value=1, step=0.01, label='Covariance 1')
with gr.Column(min_width=100):
s_cov2 = gr.Slider(0.01, 5, value=2, step=0.01, label='Covariance 2')
with gr.Row():
with gr.Column(min_width=100):
s_n_samples1 = gr.Slider(1, 1000, value=200, step=1, label='n_samples 1')
with gr.Column(min_width=100):
s_n_samples2 = gr.Slider(1, 1000, value=300, step=1, label='n_samples 2')
with gr.Row():
with gr.Column(min_width=100):
s_max_depth = gr.Slider(1, 50, value=1, step=1, label='AdaBoostClassifier max_depth')
with gr.Column(min_width=100):
s_n_estimators = gr.Slider(1, 500, value=300, step=1, label='AdaBoostClassifier n_estimators')
btn = gr.Button('Submit')
with gr.Column(scale=1.5):
plot = gr.Plot(show_label=False)
btn.click(create_plot, inputs=[s_x1, s_y1, s_x2, s_y2, s_cov1, s_cov2, s_n_samples1, s_n_samples2, s_max_depth, s_n_estimators], outputs=[plot])
demo.load(create_plot, inputs=[s_x1, s_y1, s_x2, s_y2, s_cov1, s_cov2, s_n_samples1, s_n_samples2, s_max_depth, s_n_estimators], outputs=[plot])
demo.launch()
#======================================================= |