Spaces:
Running
Running
add source citation
#1
by
KBayoud
- opened
app.py
CHANGED
@@ -3,6 +3,7 @@ import streamlit as st
|
|
3 |
from streamlit_chat import message
|
4 |
from streamlit_extras.colored_header import colored_header
|
5 |
from streamlit_extras.add_vertical_space import add_vertical_space
|
|
|
6 |
import requests
|
7 |
from gradio_client import Client
|
8 |
import datetime as dt
|
@@ -14,9 +15,8 @@ st.set_page_config(page_title="HugChat - An LLM-powered Streamlit app")
|
|
14 |
API_TOKEN = st.secrets['HF_TOKEN']
|
15 |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
16 |
headers = {"Authorization": f"Bearer {str(API_TOKEN)}"}
|
17 |
-
|
18 |
-
|
19 |
-
return input_text
|
20 |
|
21 |
soil_types = {
|
22 |
"Sais plain": "Brown limestone, vertisols, lithosols, and regosols",
|
@@ -33,9 +33,11 @@ soil_types = {
|
|
33 |
"Argan zone": "Soils are mostly lithosols and regosols, associated with fluvisols and saline soils on lowlands",
|
34 |
"Presaharan soils": "Lithosols and regosols in association with sierozems and regs",
|
35 |
"Saharan zone": "Yermosols, associated with sierozems, lithosols, and saline soils"
|
36 |
-
}
|
37 |
-
|
38 |
|
|
|
|
|
|
|
39 |
|
40 |
def get_weather_data(city):
|
41 |
base_url = "http://api.openweathermap.org/data/2.5/weather?"
|
@@ -69,11 +71,8 @@ def get_weather_data(city):
|
|
69 |
print(f"Error: {e}")
|
70 |
return None
|
71 |
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
def query(payload):
|
76 |
-
response = requests.post(API_URL, headers=headers, json=payload)
|
77 |
return response.json()
|
78 |
|
79 |
def translate(text,source="English",target="Moroccan Arabic"):
|
@@ -87,9 +86,48 @@ def translate(text,source="English",target="Moroccan Arabic"):
|
|
87 |
print(result)
|
88 |
return result
|
89 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
90 |
|
91 |
# Function to generate a response from the chatbot
|
92 |
-
def generate_response(user_input,region):
|
93 |
|
94 |
city = "Fez"
|
95 |
weather_info = get_weather_data(city)
|
@@ -97,8 +135,8 @@ def generate_response(user_input,region):
|
|
97 |
print(weather_info)
|
98 |
|
99 |
user_input_translated = str(translate(user_input, "Moroccan Arabic", "English"))
|
100 |
-
name = 'Fellah
|
101 |
-
date =
|
102 |
location = 'Fes, Morocco'
|
103 |
soil_type = soil_types[region] # Use the selected region's soil type
|
104 |
humidity = weather_info["humidity"]
|
@@ -111,29 +149,16 @@ def generate_response(user_input,region):
|
|
111 |
|
112 |
instruction = f'''
|
113 |
<s> [INST] You are an agriculture expert, and my name is {name} Given the following informations, prevailing weather conditions, specific land type, chosen type of agriculture, and soil composition of a designated area, answer the question below
|
114 |
-
Location: {location},
|
115 |
-
Current Month : {date}
|
116 |
-
land type: {soil_types[region]}
|
117 |
-
humidity: {humidity}
|
118 |
-
weather: {weather}
|
119 |
-
temperature: {temp}
|
120 |
-
|
121 |
-
'''
|
122 |
-
prompt = f'''
|
123 |
-
You are an agriculture expert, Given the following informations, geographical coordinates (latitude and longitude), prevailing weather conditions, specific land type, chosen type of agriculture, and soil composition of a designated area, request the LLM to provide detailed insights and predictions on optimal agricultural practices, potential crop yields, and recommended soil management strategies, or answer the question below
|
124 |
-
Location: {location},
|
125 |
-
land type: {soil_type}
|
126 |
-
humidity: {humidity}
|
127 |
-
weather: {weather}
|
128 |
-
temperature: {temp}
|
129 |
'''
|
130 |
-
# output = query({"inputs": f'''
|
131 |
-
# PROMPT: {prompt}
|
132 |
-
# QUESTION: {user_input}
|
133 |
-
# ANSWER:
|
134 |
-
# ''',})
|
135 |
|
136 |
-
output = query({"inputs": instruction, "parameters":{"max_new_tokens":250, "temperature":1, "return_full_text":False}})
|
137 |
# print(headers)
|
138 |
print(instruction)
|
139 |
print(output)
|
@@ -165,10 +190,7 @@ def main():
|
|
165 |
💡 Note: No API key required!
|
166 |
''')
|
167 |
add_vertical_space(5)
|
168 |
-
st.write('Made with ❤️ by [llama-crew](https://huggingface.co/
|
169 |
-
#st.write('Made with ❤️ by [llama-crew](https://hf.co/medmac01)')
|
170 |
-
|
171 |
-
|
172 |
|
173 |
# Generate empty lists for generated and past.
|
174 |
## generated stores AI generated responses
|
@@ -189,6 +211,8 @@ def main():
|
|
189 |
|
190 |
colored_header(label='', description='', color_name='blue-30')
|
191 |
response_container = st.container()
|
|
|
|
|
192 |
|
193 |
# User input
|
194 |
## Function for taking user provided prompt as input
|
@@ -203,7 +227,7 @@ def main():
|
|
203 |
## Conditional display of AI generated responses as a function of user provided prompts
|
204 |
with response_container:
|
205 |
if user_input:
|
206 |
-
response = generate_response(user_input,str(selected_region))
|
207 |
st.session_state.past.append(user_input)
|
208 |
st.session_state.generated.append(response)
|
209 |
|
@@ -212,5 +236,18 @@ def main():
|
|
212 |
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user', logo="https://i.pinimg.com/originals/d5/b2/13/d5b21384ccaaa6f9ef32986f17c50638.png")
|
213 |
message(st.session_state["generated"][i], key=str(i), logo= "https://emojiisland.com/cdn/shop/products/Robot_Emoji_Icon_7070a254-26f7-4a54-8131-560e38e34c2e_large.png?v=1571606114")
|
214 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
215 |
if __name__ == "__main__":
|
216 |
main()
|
|
|
3 |
from streamlit_chat import message
|
4 |
from streamlit_extras.colored_header import colored_header
|
5 |
from streamlit_extras.add_vertical_space import add_vertical_space
|
6 |
+
from datetime import datetime
|
7 |
import requests
|
8 |
from gradio_client import Client
|
9 |
import datetime as dt
|
|
|
15 |
API_TOKEN = st.secrets['HF_TOKEN']
|
16 |
API_URL = "https://api-inference.huggingface.co/models/mistralai/Mixtral-8x7B-Instruct-v0.1"
|
17 |
headers = {"Authorization": f"Bearer {str(API_TOKEN)}"}
|
18 |
+
|
19 |
+
API_URL1 = "https://api-inference.huggingface.co/models/HuggingFaceH4/zephyr-7b-beta"
|
|
|
20 |
|
21 |
soil_types = {
|
22 |
"Sais plain": "Brown limestone, vertisols, lithosols, and regosols",
|
|
|
33 |
"Argan zone": "Soils are mostly lithosols and regosols, associated with fluvisols and saline soils on lowlands",
|
34 |
"Presaharan soils": "Lithosols and regosols in association with sierozems and regs",
|
35 |
"Saharan zone": "Yermosols, associated with sierozems, lithosols, and saline soils"
|
36 |
+
}
|
|
|
37 |
|
38 |
+
def get_text():
|
39 |
+
input_text = st.text_input("You: ", "", key="input")
|
40 |
+
return input_text
|
41 |
|
42 |
def get_weather_data(city):
|
43 |
base_url = "http://api.openweathermap.org/data/2.5/weather?"
|
|
|
71 |
print(f"Error: {e}")
|
72 |
return None
|
73 |
|
74 |
+
def query(payload, api_url):
|
75 |
+
response = requests.post(api_url, headers=headers, json=payload)
|
|
|
|
|
|
|
76 |
return response.json()
|
77 |
|
78 |
def translate(text,source="English",target="Moroccan Arabic"):
|
|
|
86 |
print(result)
|
87 |
return result
|
88 |
|
89 |
+
def search_url(search_query):
|
90 |
+
API_KEY = st.secrets['API_TOKEN']
|
91 |
+
SEARCH_ENGINE_ID = st.secrets['SEARCH_ENGINE_ID']
|
92 |
+
|
93 |
+
url = 'https://www.googleapis.com/customsearch/v1'
|
94 |
+
|
95 |
+
params = {
|
96 |
+
'q': search_query,
|
97 |
+
'key': API_KEY,
|
98 |
+
'cx': SEARCH_ENGINE_ID,
|
99 |
+
}
|
100 |
+
|
101 |
+
response = requests.get(url, params=params)
|
102 |
+
|
103 |
+
results = response.json()
|
104 |
+
|
105 |
+
# print(results)
|
106 |
+
|
107 |
+
if 'items' in results:
|
108 |
+
for i in range(min(5, len(results['items']))):
|
109 |
+
print(f"Link {i + 1}: {results['items'][i]['link']}")
|
110 |
+
return results['items'][:5]
|
111 |
+
else:
|
112 |
+
print("No search results found.")
|
113 |
+
return None
|
114 |
+
|
115 |
+
def get_search_query(response):
|
116 |
+
instruction = f'''
|
117 |
+
Based on these information, generate a short summarized search terms. Don't include weather specifications.
|
118 |
+
Information : {response}
|
119 |
+
Search term keyword:
|
120 |
+
'''
|
121 |
+
|
122 |
+
output = query({"inputs": instruction, "parameters":{"max_new_tokens":40, "temperature":.3, "return_full_text":False}}, API_URL1)
|
123 |
+
print(instruction)
|
124 |
+
print(output)
|
125 |
+
ss = output[0]['generated_text'][:output[0]['generated_text'].find('\n')]
|
126 |
+
print(ss)
|
127 |
+
return ss
|
128 |
|
129 |
# Function to generate a response from the chatbot
|
130 |
+
def generate_response(user_input, region, date):
|
131 |
|
132 |
city = "Fez"
|
133 |
weather_info = get_weather_data(city)
|
|
|
135 |
print(weather_info)
|
136 |
|
137 |
user_input_translated = str(translate(user_input, "Moroccan Arabic", "English"))
|
138 |
+
name = 'Fellah'
|
139 |
+
date = date
|
140 |
location = 'Fes, Morocco'
|
141 |
soil_type = soil_types[region] # Use the selected region's soil type
|
142 |
humidity = weather_info["humidity"]
|
|
|
149 |
|
150 |
instruction = f'''
|
151 |
<s> [INST] You are an agriculture expert, and my name is {name} Given the following informations, prevailing weather conditions, specific land type, chosen type of agriculture, and soil composition of a designated area, answer the question below
|
152 |
+
Location: {location},
|
153 |
+
Current Month : {date}
|
154 |
+
land type: {soil_types[region]}
|
155 |
+
humidity: {humidity}
|
156 |
+
weather: {weather}
|
157 |
+
temperature: {temp}
|
158 |
+
Question: {user_input_translated}[/INST]</s>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
159 |
'''
|
|
|
|
|
|
|
|
|
|
|
160 |
|
161 |
+
output = query({"inputs": instruction, "parameters":{"max_new_tokens":250, "temperature":1, "return_full_text":False}}, API_URL)
|
162 |
# print(headers)
|
163 |
print(instruction)
|
164 |
print(output)
|
|
|
190 |
💡 Note: No API key required!
|
191 |
''')
|
192 |
add_vertical_space(5)
|
193 |
+
st.write('Made with ❤️ by [llama-crew](https://huggingface.co/smart-fellah)')
|
|
|
|
|
|
|
194 |
|
195 |
# Generate empty lists for generated and past.
|
196 |
## generated stores AI generated responses
|
|
|
211 |
|
212 |
colored_header(label='', description='', color_name='blue-30')
|
213 |
response_container = st.container()
|
214 |
+
|
215 |
+
date = datetime.now().month
|
216 |
|
217 |
# User input
|
218 |
## Function for taking user provided prompt as input
|
|
|
227 |
## Conditional display of AI generated responses as a function of user provided prompts
|
228 |
with response_container:
|
229 |
if user_input:
|
230 |
+
response = generate_response(user_input,str(selected_region), str(date))
|
231 |
st.session_state.past.append(user_input)
|
232 |
st.session_state.generated.append(response)
|
233 |
|
|
|
236 |
message(st.session_state['past'][i], is_user=True, key=str(i) + '_user', logo="https://i.pinimg.com/originals/d5/b2/13/d5b21384ccaaa6f9ef32986f17c50638.png")
|
237 |
message(st.session_state["generated"][i], key=str(i), logo= "https://emojiisland.com/cdn/shop/products/Robot_Emoji_Icon_7070a254-26f7-4a54-8131-560e38e34c2e_large.png?v=1571606114")
|
238 |
|
239 |
+
# Add Google icon button to retrieve links
|
240 |
+
if st.button(f"Double-Check Response", key=f"google_button_{i}"):
|
241 |
+
search_query = get_search_query(st.session_state['generated'][i])
|
242 |
+
retrieved_links = search_url(search_query)
|
243 |
+
if retrieved_links:
|
244 |
+
st.markdown("**Google Search Results:**")
|
245 |
+
for j, link in enumerate(retrieved_links):
|
246 |
+
st.markdown(f"{j + 1}. [{link['title']}]({link['link']})")
|
247 |
+
|
248 |
+
# Display Google logo
|
249 |
+
google_logo_url = "https://www.gstatic.com/webp/gallery/2.jpg"
|
250 |
+
st.image(google_logo_url, width=50, caption="Google Logo")
|
251 |
+
|
252 |
if __name__ == "__main__":
|
253 |
main()
|