File size: 10,213 Bytes
61ebe0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
import cv2
import numpy as np
import torch


def compute_increased_bbox(bbox, increase_area, preserve_aspect=True):
    left, top, right, bot = bbox
    width = right - left
    height = bot - top

    if preserve_aspect:
        width_increase = max(increase_area, ((1 + 2 * increase_area) * height - width) / (2 * width))
        height_increase = max(increase_area, ((1 + 2 * increase_area) * width - height) / (2 * height))
    else:
        width_increase = height_increase = increase_area
    left = int(left - width_increase * width)
    top = int(top - height_increase * height)
    right = int(right + width_increase * width)
    bot = int(bot + height_increase * height)
    return (left, top, right, bot)


def get_valid_bboxes(bboxes, h, w):
    left = max(bboxes[0], 0)
    top = max(bboxes[1], 0)
    right = min(bboxes[2], w)
    bottom = min(bboxes[3], h)
    return (left, top, right, bottom)


def align_crop_face_landmarks(img,
                              landmarks,
                              output_size,
                              transform_size=None,
                              enable_padding=True,
                              return_inverse_affine=False,
                              shrink_ratio=(1, 1)):
    """Align and crop face with landmarks.

    The output_size and transform_size are based on width. The height is
    adjusted based on shrink_ratio_h/shring_ration_w.

    Modified from:
    https://github.com/NVlabs/ffhq-dataset/blob/master/download_ffhq.py

    Args:
        img (Numpy array): Input image.
        landmarks (Numpy array): 5 or 68 or 98 landmarks.
        output_size (int): Output face size.
        transform_size (ing): Transform size. Usually the four time of
            output_size.
        enable_padding (float): Default: True.
        shrink_ratio (float | tuple[float] | list[float]): Shring the whole
            face for height and width (crop larger area). Default: (1, 1).

    Returns:
        (Numpy array): Cropped face.
    """
    lm_type = 'retinaface_5'  # Options: dlib_5, retinaface_5

    if isinstance(shrink_ratio, (float, int)):
        shrink_ratio = (shrink_ratio, shrink_ratio)
    if transform_size is None:
        transform_size = output_size * 4

    # Parse landmarks
    lm = np.array(landmarks)
    if lm.shape[0] == 5 and lm_type == 'retinaface_5':
        eye_left = lm[0]
        eye_right = lm[1]
        mouth_avg = (lm[3] + lm[4]) * 0.5
    elif lm.shape[0] == 5 and lm_type == 'dlib_5':
        lm_eye_left = lm[2:4]
        lm_eye_right = lm[0:2]
        eye_left = np.mean(lm_eye_left, axis=0)
        eye_right = np.mean(lm_eye_right, axis=0)
        mouth_avg = lm[4]
    elif lm.shape[0] == 68:
        lm_eye_left = lm[36:42]
        lm_eye_right = lm[42:48]
        eye_left = np.mean(lm_eye_left, axis=0)
        eye_right = np.mean(lm_eye_right, axis=0)
        mouth_avg = (lm[48] + lm[54]) * 0.5
    elif lm.shape[0] == 98:
        lm_eye_left = lm[60:68]
        lm_eye_right = lm[68:76]
        eye_left = np.mean(lm_eye_left, axis=0)
        eye_right = np.mean(lm_eye_right, axis=0)
        mouth_avg = (lm[76] + lm[82]) * 0.5

    eye_avg = (eye_left + eye_right) * 0.5
    eye_to_eye = eye_right - eye_left
    eye_to_mouth = mouth_avg - eye_avg

    # Get the oriented crop rectangle
    # x: half width of the oriented crop rectangle
    x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
    #  - np.flipud(eye_to_mouth) * [-1, 1]: rotate 90 clockwise
    # norm with the hypotenuse: get the direction
    x /= np.hypot(*x)  # get the hypotenuse of a right triangle
    rect_scale = 1  # TODO: you can edit it to get larger rect
    x *= max(np.hypot(*eye_to_eye) * 2.0 * rect_scale, np.hypot(*eye_to_mouth) * 1.8 * rect_scale)
    # y: half height of the oriented crop rectangle
    y = np.flipud(x) * [-1, 1]

    x *= shrink_ratio[1]  # width
    y *= shrink_ratio[0]  # height

    # c: center
    c = eye_avg + eye_to_mouth * 0.1
    # quad: (left_top, left_bottom, right_bottom, right_top)
    quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
    # qsize: side length of the square
    qsize = np.hypot(*x) * 2

    quad_ori = np.copy(quad)
    # Shrink, for large face
    # TODO: do we really need shrink
    shrink = int(np.floor(qsize / output_size * 0.5))
    if shrink > 1:
        h, w = img.shape[0:2]
        rsize = (int(np.rint(float(w) / shrink)), int(np.rint(float(h) / shrink)))
        img = cv2.resize(img, rsize, interpolation=cv2.INTER_AREA)
        quad /= shrink
        qsize /= shrink

    # Crop
    h, w = img.shape[0:2]
    border = max(int(np.rint(qsize * 0.1)), 3)
    crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
            int(np.ceil(max(quad[:, 1]))))
    crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, w), min(crop[3] + border, h))
    if crop[2] - crop[0] < w or crop[3] - crop[1] < h:
        img = img[crop[1]:crop[3], crop[0]:crop[2], :]
        quad -= crop[0:2]

    # Pad
    # pad: (width_left, height_top, width_right, height_bottom)
    h, w = img.shape[0:2]
    pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
           int(np.ceil(max(quad[:, 1]))))
    pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - w + border, 0), max(pad[3] - h + border, 0))
    if enable_padding and max(pad) > border - 4:
        pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
        img = np.pad(img, ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
        h, w = img.shape[0:2]
        y, x, _ = np.ogrid[:h, :w, :1]
        mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0],
                                           np.float32(w - 1 - x) / pad[2]),
                          1.0 - np.minimum(np.float32(y) / pad[1],
                                           np.float32(h - 1 - y) / pad[3]))
        blur = int(qsize * 0.02)
        if blur % 2 == 0:
            blur += 1
        blur_img = cv2.boxFilter(img, 0, ksize=(blur, blur))

        img = img.astype('float32')
        img += (blur_img - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
        img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
        img = np.clip(img, 0, 255)  # float32, [0, 255]
        quad += pad[:2]

    # Transform use cv2
    h_ratio = shrink_ratio[0] / shrink_ratio[1]
    dst_h, dst_w = int(transform_size * h_ratio), transform_size
    template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
    # use cv2.LMEDS method for the equivalence to skimage transform
    # ref: https://blog.csdn.net/yichxi/article/details/115827338
    affine_matrix = cv2.estimateAffinePartial2D(quad, template, method=cv2.LMEDS)[0]
    cropped_face = cv2.warpAffine(
        img, affine_matrix, (dst_w, dst_h), borderMode=cv2.BORDER_CONSTANT, borderValue=(135, 133, 132))  # gray

    if output_size < transform_size:
        cropped_face = cv2.resize(
            cropped_face, (output_size, int(output_size * h_ratio)), interpolation=cv2.INTER_LINEAR)

    if return_inverse_affine:
        dst_h, dst_w = int(output_size * h_ratio), output_size
        template = np.array([[0, 0], [0, dst_h], [dst_w, dst_h], [dst_w, 0]])
        # use cv2.LMEDS method for the equivalence to skimage transform
        # ref: https://blog.csdn.net/yichxi/article/details/115827338
        affine_matrix = cv2.estimateAffinePartial2D(
            quad_ori, np.array([[0, 0], [0, output_size], [dst_w, dst_h], [dst_w, 0]]), method=cv2.LMEDS)[0]
        inverse_affine = cv2.invertAffineTransform(affine_matrix)
    else:
        inverse_affine = None
    return cropped_face, inverse_affine


def paste_face_back(img, face, inverse_affine):
    h, w = img.shape[0:2]
    face_h, face_w = face.shape[0:2]
    inv_restored = cv2.warpAffine(face, inverse_affine, (w, h))
    mask = np.ones((face_h, face_w, 3), dtype=np.float32)
    inv_mask = cv2.warpAffine(mask, inverse_affine, (w, h))
    # remove the black borders
    inv_mask_erosion = cv2.erode(inv_mask, np.ones((2, 2), np.uint8))
    inv_restored_remove_border = inv_mask_erosion * inv_restored
    total_face_area = np.sum(inv_mask_erosion) // 3
    # compute the fusion edge based on the area of face
    w_edge = int(total_face_area**0.5) // 20
    erosion_radius = w_edge * 2
    inv_mask_center = cv2.erode(inv_mask_erosion, np.ones((erosion_radius, erosion_radius), np.uint8))
    blur_size = w_edge * 2
    inv_soft_mask = cv2.GaussianBlur(inv_mask_center, (blur_size + 1, blur_size + 1), 0)
    img = inv_soft_mask * inv_restored_remove_border + (1 - inv_soft_mask) * img
    # float32, [0, 255]
    return img


if __name__ == '__main__':
    import os

    from extras.facexlib.detection import init_detection_model
    from extras.facexlib.utils.face_restoration_helper import get_largest_face
    from extras.facexlib.visualization import visualize_detection

    img_path = '/home/wxt/datasets/ffhq/ffhq_wild/00009.png'
    img_name = os.splitext(os.path.basename(img_path))[0]

    # initialize model
    det_net = init_detection_model('retinaface_resnet50', half=False)
    img_ori = cv2.imread(img_path)
    h, w = img_ori.shape[0:2]
    # if larger than 800, scale it
    scale = max(h / 800, w / 800)
    if scale > 1:
        img = cv2.resize(img_ori, (int(w / scale), int(h / scale)), interpolation=cv2.INTER_LINEAR)

    with torch.no_grad():
        bboxes = det_net.detect_faces(img, 0.97)
    if scale > 1:
        bboxes *= scale  # the score is incorrect
    bboxes = get_largest_face(bboxes, h, w)[0]
    visualize_detection(img_ori, [bboxes], f'tmp/{img_name}_det.png')

    landmarks = np.array([[bboxes[i], bboxes[i + 1]] for i in range(5, 15, 2)])

    cropped_face, inverse_affine = align_crop_face_landmarks(
        img_ori,
        landmarks,
        output_size=512,
        transform_size=None,
        enable_padding=True,
        return_inverse_affine=True,
        shrink_ratio=(1, 1))

    cv2.imwrite(f'tmp/{img_name}_cropeed_face.png', cropped_face)
    img = paste_face_back(img_ori, cropped_face, inverse_affine)
    cv2.imwrite(f'tmp/{img_name}_back.png', img)